


ABSTRACT

MU-MIMO WLANs in Diverse Bands and Environments

by

Narendra Anand

Multi-user MIMO (MU-MIMO) is a precoding technique that allows for

an Access Point (AP) to transmit data to multiple receivers in parallel resulting

in an overall capacity increase. However, achieving these gains requires signif-

icant overhead in first choosing the subset of users to serve and measuring the

Channel State Information (CSI) between that user group and the AP. Man-

agement of this overhead and other Media Access Control (MAC) decisions

are key to the performance of MU-MIMO transmissions. Previous solutions

attempt all-purpose approaches which attempt to work well regardless of de-

ployment environment or frequency band.

However, through thorough analysis of MU-MIMO transmissions with re-

spect to band and environment, we show that an all-purpose solution will not

allow for MU-MIMO transmissions to reach their full potential. In fact, lever-

aging the differences in MU-MIMO transmission characteristics for different

bands and environments to develop separate protocols will allow for increased

overall system performance.

To address transmission scenarios with high channel variability, we present

Pre-sounding User and Mode selection Algorithm (PUMA), a transmission

mode and user selection protocol that leverages the characteristics of the highly

variable 2.4/5.8 GHz transmission scenarios for efficient MU-MIMO overhead



amortization. While PUMA results in significant MU-MIMO capacity gains

for 2.4/5.8 GHz indoor environments, it will not allow UHF-band indoor and

outdoor MU-MIMO transmissions to reach their full potential. To that end, we

design and implement Feedback Removal with Opportunistic Zero-overhead

channel EstimatioN (FROZEN), a protocol that harnesses the channel stability

of the UHF band to eliminate sounding overhead by relying on CSI measure-

ments from previously received uplink packets.
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CHAPTER 1

INTRODUCTION

Multi-user MIMO (MU-MIMO) achieves substantial capacity gains by using precoding

to support multiple, concurrent data streams to a group of clients. Precoding comprises

of computing the transmitter’s antenna gains and phases from the Channel State Informa-

tion (CSI), i.e., the channel matrix in which each element represents the magnitude and

phase offset for each transmitter-receiver antenna path. In this way, each receiver can si-

multaneously decode its streams [1]. Moreover, the recent IEEE 802.11ac amendment

promises multi-Gb/s Wireless LANs (WLANs) via down-link MU-MIMO with up to 8

transmit antennas at the AP [2, 3].

However, the potential gains of MU-MIMO transmissions come at the cost of channel

sounding overhead. The aforementioned CSI requires an overhead intensive measurement

process that must occur before a multi-stream transmission can occur.

For MU-MIMO transmitters to achieve their full potential, the transmitter must execute

novel Media Access Control (MAC) protocols that carry out efficient transmissions, i.e., the

significant channel sounding overhead must be amortized with respect to the transmitted

data so that the overall system throughput approaches the theoretical capabilities of this

multi-antenna technology.

Existing protocols that attempt to increase MU-MIMO throughput do so by attempting
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to control the channel sounding overhead using methods such as reducing the rate of chan-

nel sounding (e.g., [4]) or reducing the amount of data fed back from the sounding process

(e.g., [5]).

However, these methods fail to consider or otherwise exploit the different character-

istics of MU-MIMO transmissions in different frequency bands or environments. While

all-purpose protocols seem ideal, they do not allow for MU-MIMO to reach its full poten-

tial in these different scenarios.

To that end, this work focuses on the development of separate MU-MIMO protocols

for different band and environment combinations. These protocols leverage the beneficial

characteristics of these scenarios to avoid the detrimental characteristics of these scenarios

and increase overall system throughput.

The contributions of this thesis are as follows:

First, we conduct a thorough measurement study of MU-MIMO transmissions with re-

spect to band and environment to fully understand the differences between each scenario.

This analysis drives our protocol development in that it provides a unique understanding of

the coupled effect of these scenarios on key MU-MIMO performance determining charac-

teristics1.

Second, we present Pre-sounding User and Mode selection Algorithm (PUMA), a

transmission mode and user selection protocol that leverages the characteristics of 2.4/5.8

GHz indoor transmission scenarios for efficient MU-MIMO overhead amortization.

Finally, we present Feedback Removal with Opportunistic Zero-overhead channel Esti-

matioN (FROZEN), a protocol that harnesses the channel stability of the indoor or outdoor

UHF band to eliminate sounding overhead by relying on CSI measurements from previ-

ously received uplink packets.

The remainder of this thesis is organized as follows: Chapter 2 provides a background

1Which are User Separability and Temporal Correlation, defined and discussed in Sec. 3.2.
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of MU-MIMO transmissions, Chapter 3 discusses our MU-MIMO measurement study,

Chapter 4 and Chapter 5 present PUMA and FROZEN respectively, Chapter 6 discusses

related work, and finally Chapter 7 concludes the thesis.



CHAPTER 2

MU-MIMO BACKGROUND

In this chapter we briefly discuss MU-MIMO transmission techniques and the key perfor-

mance determining factors for MU-MIMO.

2.1 Concurrent Multi-user Transmissions

Multi-user Multiple-Input, Multiple-Output (MIMO) is a multi-antenna transmission tech-

nique that allows a transmitter to spatially reuse a wireless channel by transmitting multiple

concurrent streams. This is achieved in two steps: First, each data stream is multiplied by a

lengthM vector of complex steering weights (whereM is the number of transmit antennas)

resulting inM phase twisted copies of each data stream. Each user’s steering weight vector

(~w) is represented in the columns of the steering weight matrix W Second, each receiver’s

set of M copies are summed together at each antenna to construct K parallel data streams

(where K is the number of concurrent receivers) emanating from M antennas as shown in

Fig. 2.1.

The aforementioned steering weights are chosen such that the interference between the

parallel streams is minimal (ideally zero). To compute these weights, the transmitter must

first measure the CSI matrix (H) where each element corresponds to the magnitude and
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Rx B

Rx C

Rx A

Tx
Data-a

Data-b

Data-c

Figure 2.1: Depiction of MU-MIMO precoding.

phase difference between each transmit and receive antenna. The optimal method of con-

structing the steering matrix is Dirty Paper Coding (DPC) [6]; however, its complexity

makes it unfeasible to implement. Instead, a method known as Zero-forcing Beamform-

ing (ZFBF) [1] is shown to approach the optimal performance of DPC while employing

a computationally feasible weight matrix calculation method, the pseudo-inverse (repre-

sented as (·)†) given by

W = H† = H∗ · (H ·H∗). (2.1)

A key element of ZFBF is the zero-interference condition which is a direct result of

the pseudo-inverse. Because W = H†, ~hi ~wj = 0 for i 6= j meaning that the interference

from user i’s stream on user j is nulled and vice versa. ZFBF precodes the transmitted data

streams such that the combined wireless channel between the transmitter and the receivers

(H) is separated. If ZFBF works perfectly, we can express the precoded transmission

(W · Tx) as:

W · Tx Transmit−−−−→
H

H · (W · Tx)

=��H · (��W · Tx) = Tx (2.2)

In this work, we focus on the zero-forcing beamforming technique for MU-MIMO.
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2.2 MU-MIMO Performance Limitations

The key to the success of this precoding operation is that H ·W is the identity matrix so the

transmitted streams are received separately at each receiver. We focus on two characteris-

tics of H that can degrade the performance of this precoding operation: an ill-conditioned

H [7] or an out-dated H [8].

An ill-conditioned H matrix renders matrix inversion inaccurate [9] and thus H · W

is far less likely to equal the identity matrix I . This results in inter-stream interference

degrading the received signal strength of a data stream to its intended receiver [8]. Ill-

conditioned H matrices are a result of receiver channel correlation, an environment and

frequency dependent characteristic that will be discussed in Sec. 3.2.1.

Out-dated H matrices are a direct result of the latency between the measurement of the

H matrix and the transmission of the W precoded data streams. Increased time between

the measurement of H and the transmission of W · Tx, results in a higher probability of

incorrect transmit precoding. Essentially, the transmitter measures Ht and then calculates

Wt = H†t . However, the subsequent precoded transmission is H(t+∆t) · Wt, which may

not equal I . Whether or not Ht = H(t+∆t) is based on environmental variability and user

mobility; and, like channel conditioning, is also an environment and frequency dependent

characteristic that will be discussed in the following sections.

While a large number of studies in Sec. 6.2 have characterized the indoor and outdoor

propagation environment for the purpose of network planning and algorithm design, few

are applicable to evaluating MU-MIMO performance and most have focused on a single

frequency band. This renders measurement studies of different frequencies and radio tech-

nologies difficult to compare.

Additionally, the complexity required for real-time implementations of multi-carrier

MU-MIMO is prohibitive for today’s Software-Defined Radio (SDR) platforms [10], thus

providing a challenge to empirical measurement of MU-MIMO performance.



CHAPTER 3

CHARACTERIZATION OF MU-MIMO TRANSMISSIONS

In this chapter, we discuss our MU-MIMO measurement study. The purpose of our study is

to understand the MU-MIMO propagation differences between the UHF and 2.4/5.8 GHz

band along with the characteristics of performing MU-MIMO transmissions in indoor or

outdoor environments.

In Sec. 3.1, we discuss the implementation of our custom built MU-MIMO test hard-

ware (the Wideband UHF Radio Card (WURC) Array), in Sec. 3.2 we analyze existing

channel models to gain additional insight into MU-MIMO performance in the aforemen-

tioned band and environment combinations, and finally in Sec. 3.3 we discuss the over-the-

air, experimental results of our measurement study.

3.1 WURC Array Implementation

In this section, we describe the hardware platforms and software frameworks that we de-

signed and deployed in order to enable an experimental evaluation of UHF MU-MIMO.

First, we design and implement a new SDR analog front-end designed for high-power,

wideband Single-Input, Single-Output (SISO) UHF operation. Using the newly-developed

radio and the WARPv3 SDR hardware platform, we then develop an integrated frequency-
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diverse MU-MIMO system. Finally, we describe our extensive modifications to existing

experimental software frameworks that allow us to rapidly gather channel state informa-

tion and perform over-the-air MU-MIMO evaluations.

3.1.1 Wideband UHF Radio Card (WURC)

WURC is a new SDR analog front-end designed to enable high-power, long-range experi-

ments and hardware prototypes in the UHF frequency band. It is designed for modularity

and compactness, with the goal of enabling prototyping of new MAC and PHY enhance-

ments for UHF and Industrial, Scientific, and Medical (ISM)-band applications [11].

It connects to the host FPGA board via an HSMC or FMC (with custom adapter board)

daughtercard slot, and provides a 12-bit digital baseband quadrature interface to the host

system, while permitting in-field reconfiguration of RF analog parameters such as channel

bandwidth and center frequency between 300-3800 MHz, though it is currently optimized

and calibrated for transmissions between 470-798 MHz, and 2400-2500 MHz.

3.1.1.1 WURC High-Level System Design

MU-MIMO systems generally require a large number of independent transmit and receive

RF chains on the base station to generate multiple spatial streams. In addition, a large num-

ber of distributed client nodes are required to serve as the mobile user stations. In order

to simplify the manufacturing and management of a large number of radios, WURC is de-

signed to be modular, with calibration/control libraries and board-dependent calibration ta-

bles stored locally on each daughter-card on a micro-controller. This eases the requirements

for integration with a host platform and makes the radios completely interchangeable.
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Figure 3.1: Block diagram of WURC module on a host WARPv3 board.

3.1.1.2 Power Amplifier Design and Verification

In order to operate as an opportunistic transmitter in the UHF band and adapt to vari-

ous channel bandwidths, spectrum availability, and regulatory domains across the world,

WURC is designed to operate at arbitrary channel bandwidths from 1.5 to 28 MHz and car-

rier frequencies ranging from 300-3800 MHz. This presents a challenge for a high-power

RF design since power amplifiers and their associated impedance matching networks are

generally optimized for a narrow frequency band.

A common technique for designing high-power analog front-ends is to build multi-

ple switched amplification and filtering chains, each optimized for a narrow band. How-

ever, when the system operating frequency range spans multiple octaves, space and cost

constraints require that each chain support a wide range of frequencies. In the design
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of WURC, we target two optimized transmit and receive chains for 470-698 MHz and

2400-2500 MHz, chosen because these two bands allow unlicensed operation and are in-

valuable for research and testing. In addition, a wide-band balun transformer enables a

300-3800 MHz receiver port that can serve as a wideband spectrum sensor, if required.

Since the bandwidth of an RF chain is generally proportional to ∆f/f , common tech-

niques for designing and implementing discrete power transfer networks (such as multi-

section Chebyshev transformers [12]) either cannot meet design requirements for passband

flatness or result in non-realizable circuits when applied to bandpass designs spanning a

large frequency range like 470-698 MHz.

In order to address this problem, we implemented a wideband linear power-transfer

network utilizing real-frequency techniques [13] for the UHF front end. We target a design

goal of transmit powers up to 30 dBm from 300 to 750 MHz, the maximum power currently

allowed by the Federal Communications Commission (FCC) in the United States for unli-

censed operation [14]. The 2.4 GHz ISM transmit chain provides up to 27 dBm between

2400-2500 MHz. The RF chain of WURC provides up to 30 dB of dynamic transmit gain,

and up to 61 dB of dynamic receive gain, which when combined with its on-board Low-

Noise Amplifier (LNA) can provide up to 83 dB of receive gain for improved sensitivity,

although noise figure considerations generally limit this application to 72 dBm.

While this design was confirmed at the early design stage with SPICE simulation mod-

els, early prototypes demonstrated that package parasitics in the lumped-element broad-

band power transfer chain were not modeled by the ideal SPICE simulator. These parasitics

severely impaired the implemented high-frequency gain response and required a more ad-

vanced model and simulation technique to correctly predict their effect. Re-modeling the

RF chain in the SpectreRF circuit simulator utilizing empirical S-parameter models re-

sulted in a more accurate simulation, allowing package parasitics to be compensated for in

the lumped-element design.
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In order to verify the correctness of the implemented design and understand how man-

ufacturing process variation might effect the output frequency response of multiple RF

chains in a MU-MIMO system, we built a Python-based batch interface to the WURC’s

serial UART in order to sweep transmit frequencies while simultaneously controlling a

bench-top vector signal analyzer to measure the output power. We implemented a digital

frequency synthesizer within the digital baseband reference design in order to generate a

constant-power complex sinusoid for ease of measurement.
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Figure 3.2: Process variation across multiple fabricated WURC boards has a small effect
on output power.

The process variation plot in Fig. 3.2 was generated by increasing the output transmit

gain of each WURC at each center frequency until its output PA began to saturate. This

is the delivered output power of WURC near the 1dB compression point of the RF chain.

Notably, the process variation across different boards is less than 1 dB, with passband

ripple on the order of 2.5 dB. This means that multiple RF chains will maintain similar
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output power across the entire UHF frequency range.

3.1.1.3 Radio Architecture

WURC uses a direct-conversion quadrature transceiver architecture based around the Lime

Microsystems LMS6002D “field-programmable” transceiver IC in order to minimize size,

implementation complexity, and energy-consumption [15]. Because of this, we are able to

power the high-power RF chain from the FMC/HSMC-compliant daughtercard slot, further

decreasing size and complexity.

All 12-bit DACs/ADCs, programmable analog anti-aliasing channel filters, frequency

synthesizers, and direct-conversion mixers are integrated on a single chip while the rest

of the board contains power amplifiers and filters, antenna diversity DPDT switch, power

distribution, and a microcontroller (Fig. 3.1). We designed and tested fast-switching control

circuits on the discrete amplification stages that allow the system to operate as a TDD

transceiver with a switching time of less than 7 µs, or an FDD system with independent

transmit and receive fractional-N frequency synthesizers.

Clocking. Since the transmit and receive chains in a MU-MIMO base station require

precise phase synchronization, WURC was designed to draw RF reference clocks from

the host digital baseband board as in Fig. 3.3. We placed an additional RF reference and

sampling clock buffer on the FMC/HSMC adaptor rather than on the daughtercard itself so

that the designed system can scale up to four WURCs driven from a single host FPGA with

synchronized clocks; however, we only implement a single-radio adapter at this time.

Control and Calibration. An on-board micro-controller provides a simple, scriptable,

two-wire UART or USB UART interface to a host system for command and control of

analog parameters such as center frequency, transmit power, and analog channel bandwidth,

while providing full read/write configuration register access to the transceiver.

We designed embedded libraries complete with calibration macros that offload com-
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Figure 3.3: Source-synchronous sampling clocks and RF reference clocks are buffered in
stages, permitting daisy-chaining and future fanout to multiple radios.

plex computation from the host system and handle the loading of stored factory calibration

values for transmit and receive baseband IQ-imbalance and local oscillator feed-through

compensation. In addition, we developed automated “factory” calibration procedures that

allow us to rapidly calibrate a large number of WURCs for field deployment with minimal

setup time.

Each WURC is a highly-integrated SDR front-end module that provides unprecedented

capabilities in a small form factor, enabling a wide range of experimental trials and system

implementations with excellent RF flexibility.

3.1.2 WURC Array

In order to evaluate MU-MIMO transmissions at various carrier frequencies and node

topologies, we integrate WURC and four WARPv3 modules into a coherent 4-radio array.

Clock Sharing. The MU-MIMO WURC array combines four WARPv3 boards and 4

WURC daughtercards into a single prototype base station providing combined sample and
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RF-reference clock synchronization, power, and structural support. Synchronization of

reference clocks for ADC sampling and RF frequency synthesizers is required for coherent

beamforming and is accomplished by forwarding a daisy-chained reference clock from one

master WARPv3 baseband board to the others in the array. All radios derive their sampling

and RF reference clocks from this forwarded clock and thus remain phase-synchronized.

Antennas. Most studies of UHF propagation involve large, directional antennas in-

tended for signal reception over many kilometers. This is because optimal signal recep-

tion and transmission requires antennas of at least 1/2 wavelength to generate a resonating

standing wave. On the other hand, a WLAN deployment utilizing UHF frequencies may

wish to keep the size of the base station somewhat limited, particularly for indoor deploy-

ments. For our experiments, we utilize off-the-shelf passive, omni-directional 3 dBi DTV

antennas (August DTA240) that would provide the largest range of coverage with minimal

dependance on direction. In our experimental platform (Fig. 3.4), it is actually the dual-

band 2.4/5.8 GHz band antennas (L-com HG2458-5RD-RSP with 3 dBi and 5 dBi gain,

respectively) that are larger in size.

This type of omni-directional antenna array is ideal for indoor MU-MIMO as it pro-

vides many opportunities for multipath reflections [10]. In order to guarantee the required

channel diversity, each antenna was spaced at least 1/2 wavelength for its respective trans-

mit frequency.

3.1.3 Software Framework

In addition to the development of custom hardware to meet our design requirements, we

build upon or modify a number of existing applications in order to develop an experimental

framework for the WURC MU-MIMO array.
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Figure 3.4: Wideband UHF Radio Card (WURC) hardware platform.

3.1.3.1 WARPLab

The WARPLab 7 framework for WARP hardware provides a means to pre-compute base-

band signals in MATLAB, load transmit sample buffers into an array of WARP boards, and

then trigger a simultaneous RF transmission of all buffered signals via a back-end ethernet

network or a GPIO trigger [16]. Similarly, an arbitrary number of radios can be configured

to perform Automatic Gain Control (AGC) and store their received RF samples in buffers

for off-line retrieval and processing.

We extend WARPLab’s object-oriented framework with additional classes and methods

to support the WURC’s interfaces. This system provides a powerful workflow for UHF

PHY prototyping and measurement studies for multi-antenna systems.

Measurement Speed. WARPLab 7 contains a number of transport improvements that

result in the ability to perform near-real-time experiments by rapidly performing cycles of:

precompute, load, transmit/receive, fetch, and process on the order of 2.5 ms. A fast cen-

tral coordinator using jumbo ethernet frames for transporting IQ buffers and a compiled

MATLAB-mex transport layer can operate at per-packet time intervals. We observed that

extra switches between WARPLab nodes produce measurable switching delay and recom-

mend the use of long ethernet cables and minimization of the number of ethernet hops for
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backhaul.

While powerful, the primary drawbacks of WARPLab is that it requires a central coordi-

nator connected via gigabit ethernet switches, and real-time protocol implementations gen-

erally require processing at sub-packet timescales. These two factors hinder long-distance

or mobile experiments.

SINR Measurement Technique. In order to overcome these limitations yet still accu-

rately measure the MU-MIMO channel, we employ a WARPLab-based MU-MIMO trans-

mission framework that is based on measuring received SINR and then computing the

Shannon capacity to estimate the achievable rate of a transmission system. This is ac-

complished by a measurement technique adapted from [10] and shown in Fig. 3.5. Here,

the transmitter beamforms sections of the transmission packet independently to accurately

measure the SINR.
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Figure 3.5: Example RSSI Measurement used in achievable capacity calculation.

In the depicted 4x2 transmission example, the transmitter first sends an LTS preamble

for timing synchronization (blue) and then performs a MU-MIMO transmission to both

users (red). In the following two sections (green, purple), the transmitter sequentially ze-

roes out the steering vector to each receiver in order to measure noise and interference at

each receiver during a MU-MIMO transmission. In the example 4x2 case, this becomes
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a single-user beamformed transmission, however in the 4x3 or 4x4 case, two or three re-

ceivers would be beamformed to during this measurement.

Thus, the difference between the full MU-MIMO transmission containing both signal,

noise, and interference at each receiver (red) and the transmission containing just inter-

ference and noise at the zeroed-out receiver (green or purple) is each transmitter’s SINR.

From there, we can compute aggregate Shannon Capacity as:

C = log2(1 + SINR) (3.1)

3.1.3.2 Real-Time 802.11a/g-Like Reference Design

We realize a real-time 802.11a/g-interoperable design utilizing the WARPv3 802.11 Refer-

ence Design and WURC to transmit over UHF frequencies, with modifications to provide

10 and 5 MHz channels [17]. We develop custom HDL for the radio interface, AGC, and

digital filtering necessary for a real-time broadband system, and integrate the hardware and

software design with the WARPv3 802.11 Reference Design. This system implements a

real-time layer-2 wireless bridge utilizing an 802.11a/g AP and STA design with a com-

pletely open network stack.

In particular, the real-time capabilities of the 802.11 reference design are leveraged to

provide fine-grained continuous channel estimates from multiple transmitting antennas in

order to directly measure the MU-MIMO channel capacity instantaneously and over a long

period of time.

3.1.3.3 Framework Enhancements

In order to enable long-range MIMO channel sounding by a large number of mobile nodes,

we make the following enhancements and modifications to the WARP frameworks de-
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scribed in Sec. 3.1.3.2 and 3.1.3.1.

Hardware Integration. We adapt both the WARPLab and 802.11 reference design

to work seamlessly with the WURC hardware in place of normal WARP daughter cards.

From the perspective of the digital baseband, the analog front-end is transparent, which

allows interchangeable analog PHYs to be used with the same digital PHY/MAC for fair

comparison. This is especially useful for the MU-MIMO comparison study as it controls

for a large number of variables in the radio MAC and PHY chain.

Channel Bandwidth. The 802.11 reference design operates in a 20 MHz channel

bandwidth. In order to enable a UHF transmission to fit within one or two contiguous UHF

channels of 6 MHz, we modify the 802.11 reference design to operate at 10 and 5 MHz

channel bandwidths in compliance with the 802.11 standard. This is accomplished by

halving the data sampling rate with added programmable decimation filters and adjusting

MAC parameters and receiver DSP blocks to match.

Automatic Gain Control. The range of received power in realistic deployments is suf-

ficiently large that an AGC subsystem is required to guarantee the robust and accurate re-

ception of wideband channel sounding packets, particular when wireless nodes are mobile.

Reference designs from the WARP project rely on external power detectors and autocor-

relation to detect incoming packets and estimate a target receive gain setting, whereas an

external power detector would require additional external circuitry on WURC.

Instead, we design a custom real-time digital loop in hardware to provide AGC conver-

gence within 5.6 µs as required by the 20 MHz 802.11 PLCP and utilizing only the ADC

output for packet detection and power estimation. AGC is an enabling technique required

to ensure that channel measurement samples have the proper resolution. This is guaranteed

when the received signal strength at the ADC input falls within the dynamic range of the

ADC (the ADC’s Effective Number of Bits (ENOB) is 10 [15]).

Fig. 3.6 depicts the performance of the implemented power estimator and AGC sub-
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Figure 3.6: Verification of the implemented received power estimator and AGC operation.
Measured with Tx gain at 25 dB, with 16-QAM OFDM modulation.

system design by reporting a series of experiments over a cable between two WURC nodes

with a variable attenuator. The transmit gain is fixed to 25 dB and a 802.11g-like packet

with random data payload and 16-QAM OFDM modulation is constructed in MATLAB

and transmitted over the cable using the WARPLab framework developed in Sec. 3.1.3.1.

The received packet without Forward Error Correction (FEC) is decoded and its received

EVM is calculated as the mean across subcarriers and OFDM symbols of the normalized

distance between the received decoded symbol and the intended decoded symbol.

Both the RF path attenuation and target ADC input power are varied under these con-

ditions, resulting in the plot shown in Fig. 3.6, where the error bars represent one standard

deviation across 50 trials. The top plot shows that the ADC operating target of -26 to

-13 dBm is optimal for received EVM under a wide range of input powers. For each at-

tenuation value, the bowl of the EVM curve represents the lower bound on the system’s
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16-QAM receive EVM, with the right-most bound of this range limited by saturation at

the ADC and the left-most bound is determined by the system noise floor and quantization

error. As expected, high signal attenuation of 100 dB results in a decrease in SINR and

thus, minimum achievable EVM. We therefore fix our target ADC input power to -18 dBm

in order to ensure that channel measurement packets are detected and received without

quantization error and with maximum precision.

Channel Sounding. While the legacy 802.11 design calculates and stores channel

state information as required by its OFDM channel equalizers, this information is generally

discarded after packet reception. The channel estimation extracted from each received

802.11 PLCP header [3] provides a complete CSI estimation matrix that can be used as

a single-antenna sounding event. We modify the physical layer of the 802.11 reference

design to treat each of a series of transmitted PLCP headers as separate “packets” for the

purpose of CSI measurement from multiple transmitting antennas.

Our custom sounding “packet” is a brief 802.11g-like signal containing PLCP header

for packet detection, AGC convergence, and symbol timing extraction. The payload is just

long enough to provide error detection bits and identifying information about the transmit-

ter so that the transmitting antenna can be identified. Due to the small size of this sounding

packet, it is not compliant with the requirement that 802.11 packets contain an 802.11 and

link-layer header. Therefore, we modify the MAC software to pass all packets regardless

of valid header or fields to the Ethernet interface for processing.

We construct this special sounding packet in MATLAB and preconfigure the WURC ar-

ray, running our WARPLab modification, to transmit these packets continuously staggered

in time as shown in Figure 3.7. Tests show that WARPLab continuous-transmit mode re-

mains synchronous over long periods of time if the boards are clock synchronized. We

provide sufficient spacing between sounding packets to allow the 802.11 PHY to process

the previous packet and reset, and we find that the WARPLab buffer size of 32768 samples
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over 819.2 µs is sufficient to capture channel variation even at higher frequencies.

We combine this structure with a set of multiple listening nodes that process these

channel sounding packets and can then store them for later retrieval. A ten-minute packet

trace for a single antenna can run over 1 GB in size, so substantial buffering and disk I/O

speed is required for the recording nodes.

1 2 3 4 1 2 32 3 4

Time
819.2 µs

Figure 3.7: Short timing packets are sent from each of the WURC array antennas in rapid
succession consisting of an 802.11 PLCP preamble and a short, 14-byte payload.

3.2 Model-Driven Evaluation

In order to understand how different environments and operational frequencies will effect

the performance of a MU-MIMO system, we first turn to modern statistical MIMO channel

models [18]. Since this statistical model requires tuning for different environments and

frequencies, we compare the results using two published parametrizations for 300 MHz

[19] and 5.8 GHz [20]. These results provide the theoretical motivation for over-the-air

experiments to explore common application scenarios for UHF and 2.4/5.8 GHz WiFi.
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3.2.1 UHF vs. 2.4/5 GHz: Channel Models

Spectrum differences between 2.4/5 GHz WiFi and sub-gigahertz frequencies are essen-

tially due to the different manifestations of Doppler effects given each band’s wavelength.

Doppler effects are a result of transmitter, receiver, and client movement with respect to a

transmission’s wavelength. Because sub-gigahertz wavelengths are 2-4 times longer than

2.4/5 GHz, environmental variation will affect sub-gigahertz transmissions 2-4 times less

(without considering multi-path effects).

Fig. 3.8 shows the theoretical, freespace 50% coherence time for various sub-gigahertz

and 2.4/5 GHz frequencies [21]. The 50% coherence time is expected length of time that

the channel characteristics will vary at most 50% given some velocity (effectively channel

variation).

The coherence time difference between 2.4/5 GHz WiFi and sub-gigahertz frequencies

is between 1-2 orders of magnitude. This channel characterization does not consider many

real world effects such as multi-path or fading but provides a coarse characterization of the

key differences in the two bands.

For a more realistic characterization of the spectrum differences, we employ the COST

2100 MIMO channel model, a flexible channel model that is well suited for MU-MIMO

scenarios [18]. This channel model is tuned with parameters that are extracted from em-

pirical measurements and thus does consider real-world channel effects such as fading,

multi-path, and non-line-of-sight (NLOS) transmissions. Parametrized realizations of the

COST 2100 model have been created for 300 MHz [19] and 5 GHz [20] bands. Using

these models, we generate 15,000 channel snapshots at a simulated rate of 100 snapshots

per second to characterize the variation of channel state over time and the separability of

individual users. Specifically we explore the temporal correlation and receiver separability

(shown in Fig. 3.9) of the generated matrices.

Temporal correlation is the average autocorrelation between channel snapshots at vary-
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Figure 3.8: 50% coherence time for various sub-gigahertz and 2.4/5 GHz WiFi frequencies.

ing intervals of time calculated as described in [22]. The correlation coefficient ρ at time

interval (∆t) is defined as:

ρ(∆t) =
E
[
Hmk[t]H∗mk[t+ ∆t]

]
E
[
Hmk[t]H∗mk[t]

] (3.2)

where expectation is calculated for all combinations of transmit antennam, receive antenna

k and starting time sample t.

We show the magnitude of the temporal correlation coefficient in Fig. 3.9(a) for our

generated channels. Lower temporal correlation results in less robust MU-MIMO trans-

missions because the measured channel state has a high probability of being stale. As seen

in Fig. 3.9(a), the temporal correlation of 5 GHz WiFi almost immediately drops to below

0.9 (T0.9) a point when when re-sounding the channel is strongly suggested [23].

According to the channel models, the approximate re-sounding time for 5 GHz is 50 ms
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MIMO performance. T0.9 is 50 ms and 4 s for 5 GHz and 300 MHz
respectively.
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Figure 3.9: Temporal correlation and channel condition of 300 MHz and 5 GHz 2x2 MU-
MIMO channels generated by COST 2100 MIMO channel model.

and 300 MHz is approximately 4.5 s (almost two orders of magnitude longer). This result is

similar to what we expect from Doppler effects of the different frequency bands (Fig. 3.8)

and is similar to our indoor temporal characterization in Sec. 3.3.1.

User separability refers to how well a multi-antenna transmitter can serve a set of users

in parallel. The Demmel condition number is a modified matrix condition number that
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directly predicts the efficacy of an adaptive MIMO or MU-MIMO transmission for a par-

ticular channel realization [7].

The Demmel condition number is computed using the eigenvalues λk of HH† as:

d ,

∑n
k=1 λk
λn

(3.3)

where λ1 > λ2 > . . . > λn. This ratio represents how well a matrix can be inverted,

a key component of many adaptive MU-MIMO techniques such as Zero-Forcing Beam-

forming [1] and MMSE [24]. Specifically, the higher the condition number, the more nu-

merically unstable the inverse and thus the more inter-user interference during MU-MIMO

transmissions reducing received SINR. The condition number ranges from 1 to infinity for

well to ill-conditioned matrices, respectively.

This method of calculating the condition number is less forgiving than the traditional

singular value ratio. The singular values (σk) of H are the square root of the eigenvalues

of HH†. Thus, instead of σk/σn, the Demmel condition number is equivalent to
∑
σ2/σ2

n

meaning that channel matrices with low singular values (resulting in inaccurate inversion)

are even further “penalized.“ This modification to the condition number better predicts MU-

MIMO performance, in fact, it is consistent and accurate enough to be used for determining

parameters such as supported modulation rate and user selection [7].

The COST channel models show a significant difference between the 5 GHz WiFi and

UHF bands. The CDF shown in Fig. 3.9(b) depicts how almost all of the generated 5 GHz

channel matrices have a Demmel condition number less than 10 while UHF’s channel con-

dition varies far more and is significantly worse. This results in an increased ability for a

MU-MIMO transmitter to invert the channel matrix and send orthogonal streams to each

intended user.

Thus, existing MIMO channel models show that while the UHF channel is more tempo-

rally stable over time, its ill-conditioned channel matrices can result in lower served SINR
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due to inter-user interference. However, the available parametrizations of the COST model

are for indoor 5 GHz and outdoor UHF scenarios. We show in Sec. 3.3 how restricting

these bands to these transmission environments does not tell the full story.

3.3 Experiment-Driven Evaluation

The models analyzed in Sec. 3.2 are parametrized for particular environments, frequency

bands, and topologies. While they suggest that the performance of MU-MIMO beamform-

ing in UHF bands may be advantageous, it it difficult to directly predict or simulate UHF

performance using these models as they were not validated for application scenarios such

as indoor or urban outdoor, nor the UHF frequency band.

In order to address uncertainty in these models for our target application (indoor and

outdoor WLAN), we perform a set of experiments utilizing our custom SDR radio platform

that allows us to measure the performance of a MU-MIMO transmission over a diverse

set of carrier frequencies and characterize the wireless MU-MIMO channel for important

temporal and spatial correlation properties.

We perform over-the-air beamforming transmissions in a densely packed, office sce-

nario with multiple subscriber nodes and demonstrate not only the ability to simultaneously

beamform to distinct users in relatively close proximity, but also the relative improvement

that shifting to UHF frequencies provides.

Finally, we perform two sets of experiments with a customized MAC and PHY designed

to gather dense, wideband, over-the-air channel estimates in realistic indoor and outdoor

WLAN scenarios with multiple subscriber nodes. Using this data, we then demonstrate that

the spatial correlation for outdoor users remains similar to that of 2.4 GHz WiFi, thus in-

curring no beamforming “penalty” for utilizing a frequency band with superior propagation

and temporal correlation.
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3.3.1 Indoor MU-MIMO Transmissions

Experimental Setup. First, we evaluate the performance of UHF MU-MIMO in an indoor,

NLOS, office environment. Experiments were conducted during the work day with people

walking through the halls in the environment depicted in Fig. 3.10.

Tx
3rd Floor

(open area)

Walkway 
Bridge

Concrete

3m

Rx

Rx

Rx

Rx

Rx

Rx

Figure 3.10: Indoor Experimental Test Setup.

The transmitting array was placed on a third floor walkway bridge and 6 separate re-

ceivers in two adjacent offices within the adjoining hallway. Note that the to-scale depic-

tion in Fig. 3.10 shows the relative co-location of all receiving nodes with respect to the

distance from the transmitter to simulate a densely packed office environment. This rep-
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resents a realistic, challenging case for indoor stationary MU-MIMO transmissions due to

the co-located receivers.

To encompass a wide range of user grouping conditions, every possible combination of

transmit and receive antennas are considered. Sixty transmissions are performed for each

topology. The center frequencies for each frequency band (i.e. channel) were chosen so

that transmissions did not encounter interference from other equipment. Specifically, the

UHF channel was first directly scanned for existing DTV or microphone transmissions and

an experimental license was obtained to operate equipment on that channel. The channels

selected for 2.4 and 5.8 GHz are not currently supported by the regulatory domain where

these experiments were performed, thus ensuring minimal ISM-band interference. Using

the measurement technique specified in Sec. 3.1.3.1, every possible topology’s MU-MIMO

capacity is measured for each frequency band and shown in Fig. 3.11.
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Figure 3.11: Received MU-MIMO Capacity.

MU-MIMO Achievable Sum-Rate Capacity. Based on the channel models and ac-

companying analysis presented in Sec. 3.2.1, we expect that the increased spatial correla-

tion of UHF channels will not allow for MU-MIMO transmissions to accurately separate

nearby users. However, we find that UHF MU-MIMO transmissions can actually achieve

a sum capacity similar to that of 2.4 GHz WiFi transmissions (always between 1-2 b/s/Hz

above of below the 2.4 GHz band).
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In fact, we find that majority of the intuition and channel models surrounding UHF

MU-MIMO are not specific to the frequency band itself but rather generalized characteris-

tics of MU-MIMO transmissions. For example, the available MU-MIMO channel models

characterize indoor WiFi and outdoor UHF channel environments where, regardless of fre-

quency band, we expect increased difficulty in user separability in outdoor environments.

Note the channel condition of the different transmission bands in the NLOS environment

in Fig. 3.12 are similar in contrast to Fig. 3.9(b). Even though the wavelength of UHF is

longer resulting in better propagation through materials, the UHF-band transmission still

experiences enough multi-path to successfully beamform to multiple users in parallel.
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Figure 3.12: Demmel condition number measured for the indoor environment. Left is
better for MU-MIMO.

Additionally, the results shown in Fig. 3.11 show a known trend of achievable capacity

for MU-MIMO transmissions where the MU-MIMO gain plateaus as the available Degrees
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of Freedom (DoF)1 are reached. The consistently worse performance of 5.8 GHz is ex-

plained by the high attenuation experienced by that frequency band in NLOS conditions

combined with its sensitivity to environmental variation.

Note that UHF MU-MIMO consistently outperforms 2.4 GHz transmissions except for

in the 2x2 transmission scenario. Because the sum transmit power emanating from the array

is held constant regardless of the number of transmit antennas in use, the performance

differential is solely a result of channel state, specifically it is an indicator of temporal

channel correlation due to the WARPLab measurement platform.

As discussed on Sec. 3.1.3.1, the latency in the WARPLab platform is due to the rate

at which the host PC can download and upload samples to each of the WARP boards over

Ethernet. In our system, we benchmark a read/write rate of approximately 2.5 ms per

buffer and the closed loop beamforming method employed requires between 10 to 20 ms

to complete depending on the number of transmit and receive antennas (the difference

between a 2x2 and 4x4 transmission scenario).

Measured Temporal Correlation. To gain additional insight into the measured capac-

ity results and to infer real world performance from our MU-MIMO transmissions, we also

consider the channel correlation measured during each experiment.

For each topology, we consider each of the 60 MU-MIMO transmissions and their

channel matrices. We calculate channel correlation between varying times during the ex-

periment to measure the rate of change of the channel information with respect to time.

These calculations are an average over all topologies (all combinations of transmit and

receive antennas).

Fig. 3.13 shows how the channels decorrelate over the course of one measured second

in time. This is effectively an indicator of how long a transmitter has after measuring the

channel matrix and before actually transmitting parallel streams using that measurement.

1DoF here refers to how many more transmit antennas there are than receive antennas in a MIMO trans-
mission.
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A coherence time of T0.9 represents when the probability of the channel being too stale to

successfully beamform over is high.
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Figure 3.13: Measured Temporal Channel Correlation, depicting Beacon Interval, and T0.9.
WARPLab latency is 10-20 ms depending number of transmit and receive antennas.

First, note that the WARPLab latency range of 10 to 20 ms is approximately T0.9 for the

the two WiFi frequency bands. This indicates why only the 2x2 transmission scenario has

the 2.4 GHz transmitter outperform UHF MU-MIMO; the latency between the sounding

and transmission phase was the lowest and just at the T0.9 limit.

While the 2.4/5 GHz frequencies both drop significantly within 100 ms, UHF remains

above the T0.9 threshold for the maximum one measured second difference between channel

matrices. While these correlation values are not asymptotic and will eventually degrade,

the performance of 2.4 and 5.8 GHz is sufficently low for stationary devices [23].
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Also note that the 802.11 beacon packet rate (100 ms) is greater than the interval that

2.4/5 GHz MU-MIMO channels decorrelate. However, the stability of the UHF channel

implies that a UHF MU-MIMO system could use periodic protocol packets for exchanging

channel state information.

Finally, the channel correlation result shown in Fig. 3.13 effectively scales the MU-

MIMO achievable rate shown in Fig. 3.10. The rate at which the 2.4/5 GHz channel decor-

relates necessitates channel sounding on a per packet basis adding considerable overhead to

MU-MIMO transmissions. However, the temporal stability of the UHF MU-MIMO chan-

nel allows a transmitter to significantly reduce this overhead intensive sounding process

and thus significantly increase the potential MU-MIMO gains.

3.3.2 Outdoor Channel Characterization

Tx

Rx

Rx

Rx

Rx

RxRx

Figure 3.14: Experimental setup for outdoor channel sounding experiments. Distances
between transmitter (on third floor balcony) and receivers shown. Note building and tree
locations.
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Finally, using the experimental framework developed in Sec. 3.1, we perform outdoor

channel sounding experiments to directly compare the performance and stability of UHF

MU-MIMO channels. To that end, we setup an experimental network of a collection of

nodes located outdoors being served by our array from a third floor balcony. Although the

UHF transmitter is capable of transmitting much further distances, we limited the scale of

the topology as shown in Fig. 3.14 to ensure a fair comparison between UHF and 2.4/5 GHz

bands. The locations of the nodes were chosen such that the transmissions from the UHF

and 2.4/5 GHz bands would reach the receivers (the UHF band transmitters can easily

transmit further than 50 m). However, even by reducing the receiver distance to what is

shown in Fig. 3.14, the 5 GHz band transmissions did not reliably reach the receiving

nodes severely limiting the number of measured channel matrices. Thus, we restrict our

outdoor comparison to the UHF and 2.4 GHz bands.
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Figure 3.15: Measured Demmel Condition Number of the outdoor MU-MIMO channel.
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Just as we evaluated temporal correlation in the multi-path rich, indoor transmission

environment, we seek to similarly characterize the most detrimental aspect of the outdoor

MU-MIMO channel: receiver separability. Ill-conditioned channel matrices, as discussed

in Sec. 3.2.1, have a detrimental effect on an MU-MIMO enabled transmitter’s ability to

separate multiple users.

In the previous section, we found that while temporal stability of UHF was greater

than that of 2.4/5 GHz, spatial correlation did not suffer as the UHF MU-MIMO trans-

missions were able to separate the co-located receivers. However, in an open, outdoor

line-of-sight (LOS) environment, we find that both the UHF and 2.4 GHz bands exhibit the

same Demmel condition number. Additionally, the CDF of the Demmel condition number

closely matches the COST UHF channel condition shown in Fig. 3.9(b). This suggests that

the comparison shown in Fig. 3.9(b) is not a result of the frequency band itself, but rather

the wholly different channel environments in which the model was parametrized.



CHAPTER 4

MU-MIMO PROTOCOL FOR VARIABLE CHANNELS

To increase system throughput of MU-MIMO transmissions in variable environments (e.g.,

the 2.4/5.8 GHz band), we present Pre-sounding User and Mode selection Algorithm

(PUMA), a method for efficiently making MU-MIMO MAC-layer decisions before the

users’ CSI is collected.

PUMA allows for an MU-MIMO Access Point (AP) to make the key MAC-layer deci-

sions of (number of transmit antennas and collective number of receive antennas) and the

group (set of receivers) prior to transmission and thus without requiring measured CSI.

To accomplish this, PUMA exploits theoretical properties of MU-MIMO system scal-

ing with respect to mode, characterizes the relative cost and overhead of realizing each

potential mode, and estimates the per-stream transmission rate and aggregate throughput in

each mode for a potential set of users. We show that on average, PUMA selects the mode

and group that achieves a joint transmission rate that is within several percent of what

would have been achieved by sounding all users. Yet, PUMA makes its selection prior to

sounding any users and therefore does not require any additional sounding overhead for

user and mode selection. Moreover, we show that PUMA obtains 30% higher aggregate

throughput in comparison to even the best fixed-mode policy (e.g., a policy such as always

using the maximum number of transmit antennas and collective receive antennas).
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The remainder of this chapter is organized as follows: Sec. 4.1 provides an overview

of PUMA, Sec. 4.2 describes how to integrate PUMA with an existing MU-MIMO trans-

mission protocol (specifically 802.11ac), and finally, Sec. 4.3 provides an experimental

evaluation of PUMA.

4.1 PUMA Overview

The PUMA algorithm is executed before the start of any MU-MIMO transmission with

only a priori information; i.e., without any information garnered from previous multi-

stream communication or channel sounding. The necessity of using only immediately

available information for mode selection stems from the highly volatile nature of an in-

door WLAN environment.

Although this multi-path rich, fading environment results in well conditioned channels,

indoor WLAN environments can have an unpredictable coherence time [25, 10, 26]. The

measured CSI can easily become stale between packets, making previous transmissions

unhelpful for predicting future environments. Additionally, because of the high overhead

incurred from measuring CSI, it would be costly for the transmission mode selection to

rely on channel sounding. To alleviate the effects of variable and costly CSI measurement,

PUMA selects the best mode and user group without CSI.

The following sections detail how, using only the information available before chan-

nel sounding (Sec. 4.1.1), PUMA predicts the per-user MU-MIMO datarate (Sec. 4.1.2),

computes a potential group’s throughput (Sec. 4.1.3), and finally selects the appropriate

user/group combination (Sec. 4.1.4).
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4.1.1 Available Pre-sounding Information

Before initiating an MU-MIMO transmission, the AP has the following information: sys-

tem state, queue state, and link state. By leveraging this a priori information, PUMA

enables an AP to select the best mode. The system state and queue state are used directly

in protocol overhead calculation detailed in Sec. 4.1.3. Link state is leveraged in per-user

data rate prediction detailed in Sec. 4.1.2. Combining these components, PUMA estimates

the throughput of any possible MU-MIMO transmission an AP can execute.

System State. Before any transmission, the AP knows the hardware configurations of

itself and its clients. This includes the available (maximum) number of transmit anten-

nas Mmax and the available number of associated users’ receive antennas Kmax. PUMA

leverages this system state for overhead computation. While a greater number of overall

antennas results in increased data transmissions, it also significantly increases sounding

overhead.

Queue State. The AP is also aware of each receiver’s backlog or queue size. The

amount of available data directly affects how much sounding overhead is amortized. If the

amount of available data for a particular user is relatively small compared to sounding over-

head, the potential gains of a MU-MIMO transmission to that user are severely diminished.

We express the available data in terms of available packets b.

Link State. The AP is aware of each user’s link state or omnidirectional Signal-to-

Noise Ratio (SNR). The AP automatically gathers this information from periodic beacon

messages and updates this information after each received packet. Unlike CSI, this metric

need not be instantaneous since received signal strength stays coherent longer than multiple

packet transmissions (approximately 90 ms at 0.9 kph [27]). PUMA leverages each client’s

link state to estimate the achievable data rate.
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4.1.2 Predicting User-specific MU-MIMO Datarate

The first key technique of PUMA is the estimation of per-user datarate. PUMA accom-

plishes this by computing the expected Signal-to-Interference-and-Noise Ratio (SINR) of

an MU-MIMO transmission using only pre-sounding information based on theoretical MU-

MIMO system scaling. PUMA then estimates the achievable rate using a protocol specific

minimum SINR table (such as Table 4.2).

4.1.2.1 Post-Sounding Rate Estimation

Many works provide expressions for the expected received SINR or aggregate capacity of

a MU-MIMO transmission (e.g. [1, 28]) such as the following (where C is in b/s/hz):

C = max
~wk,Pk

K∑
k=1

log2

(
1 +

∑K
j=1 Pj|~hk ~wj|2

1 +
∑K

j=1,j 6=k Pj|~hk ~wj|2

)
. (4.1)

However, such methods are not suitable for our purposes because they require information

only available after sounding: the measured channel matrixH . Instead, we seek to estimate

the expected performance of a MU-MIMO transmission before the channel is sounded.

Given the significant overhead of channel sounding (which we discuss specifically for

802.11ac in Sec. 4.2), a transmitter must serve whatever user it sounds to maximize perfor-

mance (to be described in Eq. (4.4)). Additionally, the channel state is highly variable for

the frequencies used in WLANs [10] and thus channel sounding must occur before every

packet transmission (i.e., previously measured channel matrices cannot be used reliably for

future transmissions).

4.1.2.2 Pre-Sounding Rate Estimation

PUMA’s pre-sounding rate estimation method is based on theoretical MU-MIMO system

scaling. PUMA exploits this scaling by estimating the received SINR for a particular client
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and converting it into an expected achievable datarate using a standard specific minimum

SNR table such as Table 4.2.

The basis of Eq. (4.1) is the computation of SIR from the multiplication of the ~h and

~w vectors. While the H matrix represents the measured CSI, the W matrix is what the AP

computes from H to actually construct parallel streams.

A commonly employed MU-MIMO precoding technique, ZFBF [1], requires that the

W matrix be computed as the inverse of theH matrix. Beamforming itself is the application

of the W steering matrix through the channel H or H ·W . While a matrix times its inverse

should result in the identity matrix, the actual value of H and W may not precisely meet

this criterion due to per-user power allocation or an ill-conditioned H .

Eq. (4.1) is based on this matrix multiplication H ·W . The additional computations are

simply to convert SINR into Shannon Capacity.1 Thus, the result of the matrix multiplica-

tion is the diagonal matrix L and is a representation of the received SINR. Each diagonal

element li corresponds to each of the K receiving antennas and its magnitude encompasses

the beamforming gain (or loss) with respect to the received omnidirectional signal strength

P/No [29].

Thus, assuming equal per-user power allocation (and normalized per-antenna power

allocation), the actual SINR for a beamforming transmission based on this measured H is:

SINR = 10 ∗ log10

(
P/No

M
|li|2
)
. (4.2)

This expression still leaves us in the same position as with Eq. (4.1). However, instead of

attempting to calculate |li|2, we consider its distribution.

The distribution of the SINR determining |li|2 factor can be shown to be Erlang for

Rayleigh matrices [30]. The distribution is dependent upon the dimensions of H (M and

K) and has mean (M − K + 1)/K. Therefore, combining with Eq. (4.2), we estimate

1Recall that the Shannon Capacity is computed as C = log2(1 + SINR).
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per-user SINR as

E{SINRBF} = 10 · log10

(
M −K + 1

K

(P/No)

M

)
. (4.3)

While the resulting expected value computation of per-user SINR shown in Eq. (4.3) is

inherently less precise than Eq. (4.1) because it does not use CSI, Eq. (4.3) exploits general

system scaling properties of MU-MIMO transmissions to produce a sufficiently accurate

result (verified in Sec. 4.3.2).

4.1.2.3 Model Rationale

This scaling is proportional to the available DoFs of a particular transmission mode. A

mode’s DoFs refer to how many more transmit antennas there are than receive antennas or

M − K + 1. The larger this value, the easier it is to construct interference free parallel

streams. An [M , K] transmission requires an M × K channel matrix, which is easier to

accurately invert or otherwise decompose when M > K since it will be better conditioned

[31].

However, absolute DoFs do not reveal the full solution for theoretical MU-MIMO

received SINR scaling; instead we consider normalized DoFs. For example, although

both [M10, K9] and [M3, K2] transmissions have equivalent absolute DoFs (2), the per-

user SINR increase would be far more noticeable in the latter system because it has rela-

tively more DoFs with respect to K. Thus, MU-MIMO SINR should scale relatively with

(M −K + 1)/K.

4.1.2.4 Inferring Rate from SINR

PUMA’s SINR estimation method, Eq. (4.3), only requires the M and K of a potential

mode and a particular user’s omnidirectional signal strength (P/No) periodically updated

from beacon packets and previous transmissions. Like CSI, the omnidirectional SNR can
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become stale after a period of time. However, omnidirectional SNR is far more robust

to environmental variation than CSI. Channel matrices used for MU-MIMO transmissions

are dependent on precise magnitude and phase offsets between each antenna path. Given

the wavelengths of the frequencies used for WLANs and their physical interactions with

obstacles, slight variations in the transmission environment can render a previously mea-

sured magnitude or phase useless. Instead, SNR is a coarse grained measurement that is an

aggregate of all amplitudes and thus varies more slowly.

PUMA estimates the received SINR for each user in an [M , K] system, which allows

an AP to not only compare an [M , K] system to an [M ′, K ′] system, but also estimate

an approximate Modulation and Coding Scheme (MCS) rate for each user using the SNR-

MCS tables provided by the standard (for 802.11ac see Table 4.2).

4.1.3 Computing Expected Throughput

The second component of PUMA is the analysis of the selected MU-MIMO protocol

specifically with respect to its aggregate throughput (R) using renewal arguments.

Other than the inferred expected rate (detailed in Sec. 4.1.2), the main components

of expected throughput calculation are node backlog (the number of available packets to

transmit per receiver) and net transmission overhead. By combining node backlog (client

dependent), net overhead (mode dependent), and the expected rate (client and mode depen-

dent), PUMA computes the expected goodput of any possible MU-MIMO transmission.

Thus, PUMA provides a quantifiable metric for any possible transmission, allowing an AP

to accurately compare potential mode and group selections. For simplicity, please refer to

Table 4.1 for parameter notation:

The throughput R for any wireless transmission is generally represented as the amount
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Parameter Description
R Aggregate Goodput (bits/s)
ri Per-user achievable rate (bits/s)
bi Per-user aggregation rate (packets)
LD Net Data Length (bits)
Lp Packet Length (bits)
TOH Net Overhead Time (s)
TS Channel Sounding Time (s)
TCF CSI Feedback Time (s)
TACK Net Receiver Acknowledgment Time (s)

Table 4.1: Expected Rate Notation

of data to transmit divided by the total transmit time (including overhead):

R = LD/(TD + TOH). (4.4)

The total amount of transmitted data across all streams LD given the maximum packet

length Lp is:

LD =
∑

i∈K
bi · Lp. (4.5)

The overhead time TOH is:

TOH = TS + TCF + TACK (4.6)

where TS is the channel sounding time, TCF is the channel feedback time, and TACK is

the receiver acknowledgment time. Thus, TD, the total data transmission time given the

per-user rate ri is:

TD = max
i∈K

(bi · Lp)/ri. (4.7)

We express TD as a maximum value in case the protocol (e.g., 802.11ac) supports
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different per-user packet aggregation rates bi or different per-user modulation rates ri.

Through this formulation of aggregate goodput, we see that the value of TOH limits the

performance of a MU-MIMO transmission. A larger user set K served with more antennas

M results in a larger amount of transmitted data LD but it also results in a larger amount of

overhead TOH (which, like LD, also scales with M and K). The appropriate mode is one

that maximizes R by efficiently balancing LD and TOH .

While the basis of PUMA’s overhead analysis is applicable to any standard, we focus

on 802.11ac in Sec. 4.2.

4.1.4 Selecting Mode and User Group

PUMA seeks to jointly minimize the effects of TOH and maximize the value of R from

Eq. (4.4). Essentially, for a set of per-user rates ri and per-user backlog bi, PUMA com-

putes:

max
M∈Mmax,K∈KR

R(M,K, b, r) (4.8)

where Mmax is the maximum possible number of transmit antennas and KR is the subset of

all potential associated receivers with packets in their queues.

One method of maximizing this expression is an exhaustive search. The value for b is

set per-user and the value of r is dependent upon how many other concurrent users exist.

Thus, the overall search space is:

Mmax∑
M

M∑
K=1

(
KR

K

)
. (4.9)

This number of potential combinations can be exhaustively searched as long as KR is not

too large. Limiting KR can be done in any number of ways such as truncating users with

small bi, fairness, or other QoS constraints.
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Thus, the exhaustive search method is feasible. When an AP is ready to transmit, the

algorithm is executed as follows:

1. Generate KR ∈ Kmax (associated receivers with packets in their queues).

2. ∀M ∈ Mmax and sets of K ∈ KR (where K ≤ M ), compute the expected per-user

SINR for each [M , K] combination as shown in Eq. (4.3).

3. Using the standard’s receiver sensitivity table for 90% packet reception, estimate the

MCS for each K in every potential group to generate a list of all possible M , K,

MCS combinations.

4. Using Eq. (4.4) combined with protocol specific values, calculate the expected aggre-

gate throughput for each M , K, user group dependent MCS combination and choose

the largest.

While multiple potential modes ([M ,K] combinations) could have equivalent expected

throughputs if they have identical frame aggregation values or similar link qualities, the

probability of this occurring is relatively low and the final selection can be chosen ran-

domly.

4.2 PUMA with 802.11ac

While PUMA’s basic mechanism is applicable to any random access MU-MIMO proto-

col, we demonstrate its functionality with 802.11ac. The two protocol-dependent compo-

nents of PUMA are datarate inference from expected SINR and potential mode aggregate

throughput calculation.
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4.2.1 Datarate Inference from SINR

After computing the expected SINR from Eq. (4.3), PUMA employs protocol-specific min-

imum SNR tables to infer the expected per-user datarate. With this per-user datarate,

PUMA computes the expected aggregate throughput of any possible mode and user group.

Table 4.2 is 802.11ac’s minimum SNR table for ensuring a 90% packet reception rate.

For each user and potential mode, PUMA selects the MCS index whose corresponding SNR

is less than or equal to the expected value calculated using Eq. (4.3). The corresponding

number of data bits per symbol (NDBPS) is the per-user datarate.

MCS Index Rate NDBPS
∗ SNR (dB)

0 BPSK 1/2 117 1.1
1 QPSK 1/2 234 4.1
2 QPSK 3/4 351 6.7
3 16-QAM 1/2 468 9.6
4 16-QAM 3/4 702 12.8
5 64-QAM 2/3 936 17.2
6 64-QAM 3/4 1053 18.4
7 64-QAM 5/6 1170 19.7
8 256-QAM 3/4 1404 23.9
9 256-QAM 5/6 1560 25.5

∗ NDBPS (number of data bits per symbol) for each MCS when
channel bandwidth is 80 MHz.

Table 4.2: Required SNR (for 90% packet reception rate)

Note that the difference between MCS index’s SNRs is as large as 4.4 db (MCS 4 vs.

5). Although PUMA’s SINR estimation method is inherently less accurate than a post-

sounding method since it does not utilize CSI, each MCS’s large SNR ranges immensely

reduce the resulting effect of this error (see Sec. 4.3.2).
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(a) Three concurrent streams at MCS 2. R = 145 Mbps.
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(b) Two concurrent streams at MCS 4. R = 161 Mbps.

LEGEND

� EBO Expected Backoff � DIFS DCF Interframe Spacing

� NDPA Null Data Packet Announcement � SIFS Short Interframe Spacing

� NDP Null Data Packet � CBFR Compressed Beamforming Report

� Poll Time � Data

� BA Block Ack

Figure 4.1: Example 802.11ac transmission timeline with 3 antenna transmitter sending
multiple, 10 aggregated packet streams at 80 MHz (to scale).

4.2.2 Aggregate Throughput Calculation

Aggregate throughput calculation is dependent on protocol overhead in addition to per-user

expected datarate and backlog. Analysis of the 802.11ac specification allows for PUMA to

precisely compute the expected aggregate throughput for a potential mode and user group.

We express each segment of an 802.11ac transmission as generally described in Eq. (4.4)–

(4.7). An example of an 802.11ac MU-MIMO transmission is depicted as a timeline shown

in Fig. 4.1. After the expected backoff duration EBO=139.5µs (or 15.5 slots at 9µs/slot) and

DIFS=34µs, the AP begins transmitting.

Channel Sounding (TS). The transmitter first announces to all users in transmission

range which specific subset is to expect the upcoming transmission with the Null Data

Packet Announcement (NDPA=7.4µs) followed by the Null Data Packet (NDP). The NDP

contains the sounding pilots used by the receivers to estimate the channel state between

itself and each transmitting antenna (thus it scales with M ).
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Channel Feedback (TCF). Each receiver must sequentially reply with the Compressed

Beamforming Report (CBFR) returning a compressed, per subcarrier version of the sound-

ing pilots to the transmitter in the form of angle pairs (12 or 16 bits each for MU-MIMO,

10 or 12 bits for SU-MIMO). The number of angle pairs scales with the number of trans-

mitting antennasM and the number of receiving antennas for that particular node (the 3×1

vector in the example shown in Fig. 4.1 requires two angle pairs per subcarrier).

The 80 MHz bandwidth has 234 usable subcarriers. One compressed angle set can be

used to indicate groups of 1, 2, or 4 subcarriers. This results in a very high overhead due to

channel feedback. The example timeline is scaled to 16 bits of feedback with a subcarrier

grouping factor of 2. Each receiver has 3,744 bits to transmit back to the AP at the base

rate (MCS 0, see Table 4.2) to ensure that the report is not lost.

While the M=3 antenna transmitter sent the NDP in 7.4µs, each receiver must spend

144µs responding with its CBFR.

Between each CBFR, the AP sends a short polling packet requesting the next user to

send its report.

Data Transmission (TD,LD). Finally, the AP forms concurrent data streams at vary-

ing frame aggregation and MCS rates. If one stream finishes early, the remaining time

until the longest stream completes is wasted. PUMA’s throughput formulation shown in

Eq. (4.4) accounts for the potential of unequal stream lengths. Instead of arbitrarily trying

to avoid this scenario, PUMA searches for the option with the largest throughput. Because

this wasted airtime does have a negative effect on throughput, the probability of such a

transmission occurring is low. Nevertheless, PUMA can handle this scenario without ex-

plicitly considering it.

Block Acknowledgment (TACK). Once the data transmission has completed, each re-

ceiver must sequentially reply with block acknowledgments (BA=6.4µs). Thus, this com-

ponent of the overhead scales with K.
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4.2.3 Example PUMA Transmission

Fig. 4.1 depicts the timeline of two separate transmissions from a 3-antenna transmitter to

either three (Fig. 4.1(a)) or two single antenna receivers (Fig. 4.1(b)). Each stream consists

of 10 aggregated full size (1,500 byte) packets. As previously discussed, the overhead

(channel sounding, channel feedback, and acknowledgment) for both transmissions is sent

at the base rate although the resulting data rates are different.

PUMA first calculates the expected datarate of each user. For this example, let each

of the three potential users have 18 dB omnidirectional SNRs. Using Eq. (4.3), PUMA

computes expected SINRs of 8.4 and 13.3 dB for users in the [M3, K3] and [M3, K2]

modes respectively. By referencing Table 4.2, PUMA selects MCS 2 for [M3, K3] and

MCS 4 for [M3, K2].

Once the per-user datarates are computed, PUMA computes the aggregate throughput

of the potential modes given the expected datarate and node backlog as shown by the to-

scale timelines in Fig. 4.1. Through this computation, PUMA identifies that the aggregate

throughput of the [M3, K3] transmission is 145 Mbps while the aggregate throughput for

the [M3, K2] transmission is 161 Mbps. Thus, PUMA selects the [M3, K2] transmission

mode.

This example highlights a common yet counterintuitive result that PUMA identifies.

A MU-MIMO transmission does not always benefit from using the most antennas. Not

only does the protocol overhead increase with additional antennas, but also the per-user

MU-MIMO SINR decreases resulting in lower per-user datarates.

4.2.4 Numerical Analysis of Mode Selection

To observe the expected performance and gain an intuition into the effects of M and K,

we present a numerical example of PUMA specific to 802.11ac. We consider four sepa-

rate [M4, K1:4] systems. To evaluate the best case performance for each [M , K] system,
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Figure 4.2: Theoretical expected throughput (Eq. (4.4)) of a M4 antenna transmitter to
K1:4 parallel single antenna receivers with b=64. For each omnidirectional SNR, maximum
expected aggregate throughput represented by square marker.

all receivers have equivalent omnidirectional SNRs and transmit at the maximum frame

aggregation rate (b=64) for maximum overhead amortization.

For a range of omnidirectional SNRs, we infer the expected per-user datarate given M

and K using Eq. (4.3) and Table 4.2. We then calculate the expected aggregate throughput

using Eq. (4.4) considering 802.11ac-specific overhead and show the performance for each

of the four [M4, K1:4] systems in Fig. 4.2. The mode that results in the highest aggregate

throughput is marked for each omnidirectional SNR.

The key intuition gained from this numerical example is the effect of channel sounding

overhead with respect to M and K. While increasing M slightly increases the size of

an individual CBFR, additional K increases the number of CBFRs. Thus, to efficiently

amortize the overhead induced from increased M and K, the channel state must support

high per-user datarates.

The theoretical properties of MU-MIMO system scaling highlighted in Eq. (4.3) show
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the effect of higher order modes on per-user SINR. For example, an [M4,K4] system results

in a per-user SINR approximately 12 dB less than the omnidirectional SNR. Thus, a per-

user omnidirectional SNR much higher than 12 dB is required to perform a [M4, K4] at a

high datarate. The aggregate throughput for a [M4, K4] system in Fig. 4.2 is non-zero at

14 dB, begins to contend with the other modes at 19 dB, and consistently outperforms all

other modes starting at 30 dB.

The results for higher order modes in this numerical example further highlight the coun-

terintuitive result shown in Fig. 4.1: increasing the number of parallel streams is not al-

ways the most efficient transmission mode. Additionally, because MCS defined datarates

are discrete, the aggregate throughput curves for each mode are jagged and result in many

intersection points. Thus, each mode does not have a clear SNR range where it exhibits the

maximum throughput, necessitating PUMA’s dynamic selection method.

PUMA’s complete analysis of MU-MIMO system scaling and protocol specific over-

head allows for the appropriate mode selection decision given the current state of the sys-

tem. In fact, Fig. 4.2 graphically represents a PUMA enabled AP’s decision engine and

the markers represent the decisions themselves: the dynamically calculated, maximum

throughput mode.

4.3 PUMA Evaluation

4.3.1 Experimental Methodology

We first characterize the performance of PUMA through OTA transmissions to verify

PUMA’s datarate inference method and generate realistic channel traces. We then utilize

this realistic OTA data for channel-trace driven emulation.



CHAPTER 4. MU-MIMO PROTOCOL FOR VARIABLE CHANNELS 51

4.3.1.1 OTA Experimentation

We conduct OTA experiments using the WARP software defined radio [16] utilizing a Zero-

Forcing Beamforming framework developed in [10] and expanded in [32]. To perform

our experiments, we modify WARPLab, a system that allows for baseband signals to be

proccessed in MATLAB, downloaded to the board, and transmitted over-the-air. A full

description of this transmission process is found in Sec. 3.1. Because the 802.11ac standard

allows up to 8 spatial streams, we connect two 4 antenna WARP boards together to make

an appropriate transmitter.

We place 8 receiving antennas in 8 different non-line of sight locations to emulate

a typical indoor wireless LAN environment as shown in Fig. 4.3. We then serve every

combination of [M1:8, K1:8] to get a variety of different channel environments for each

topology and measure the SINR.

The resulting variability of omnidirectional SNR measurements resulted in an overall

mean of 18.3 dB and standard deviation of 5 dB. This allows us to verify the model using

a wide range of P/No values.

4.3.1.2 Channel-Trace Driven Emulation

We construct a discrete time event emulator in MATLAB to evaluate the efficacy of our

mode selection algorithm. For simplicity, we consider a topology wherein an M4 antenna

transmitter serves a subset (K1:4) of 8 possible single antenna receivers. We consider K1:4

because 802.11ac supports only up to four concurrent receivers (but up to 8 collective

receive antennas).

Because we seek to isolate the effects of mode and user selection, we design an em-

ulation engine that ignores collisions and retransmissions. Transmissions are executed as

packets become available on a first-come first-serve basis. At the beginning of every trans-

mission event, each mode and user group is selected based on how many available packets
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Figure 4.3: Experimental topology.

are in each receiver’s queue (up to 802.11ac’s 64 packet frame aggregation maximum).

Packets are modeled to arrive as a Poisson process and the input traffic is defined as aggre-

gate offered load (cumulative generated traffic) to all receivers.

We use our measured, OTA omnidirectional SNR values at each node as a channel trace

to determine the expected per-user MCS. The variation in the measured values allows us to

consider heterogeneous channels with different omnidirectional SNRs on the AP to client

links

Since the 802.11ac standard supports unequal length parallel data streams and unequal

per-user datarates, we allow the emulator to transmit parallel payloads with different MCS

rates and frame aggregation sizes. Each emulation was run for 100 emulated seconds. As

shown in 4.3, the emulation was conducted assuming an 80 MHz bandwidth and 4 µs sym-

bol times. The CBFRs were quantized at 16 bits per subcarrier and a subcarrier grouping
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of 2. The AP is allowed up to 4 transmit antennas and it serves a group of 8 single antenna

receivers (Mmax = 4 and Kmax = 8).

Parameter Value
Bandwidth 80 MHz

cbfr Bits per Subcarrier 16
cbfr Subcarrier Grouping 2

Symbol Time 4µs
Mmax 4
Kmax 8

Table 4.3: Simulation parameters.

4.3.2 Expected SINR Calculation Accuracy

We validate the accuracy of PUMA’s SINR estimation method used for datarate inference.

Our experiment consists of performing 8 OTA transmissions for all [M1:8, K1:8] topologies

as discussed in Sec. 4.3.1.1.

Using the measured omnidirectional SNR for each receiver, we use Eq. (4.3) to predict

the per-user SINR for each receiver. Perfect SINR results are not expected as Eq. (4.3)

is based on general MU-MIMO system scaling as opposed to CSI. However, the resulting

error is almost zero mean and with a standard deviation of 2.43 dB as shown in Fig. 4.4.

This error is tolerable because the standard deviation is approximately equivalent to SINR

range for each modulation rate shown in Table 4.2. The use of the MCS table diminishes

this error by effectively truncating it. We explore the effect of this error mitigation in

Sec. 4.3.3.

Thus, the expected value equation for per-user SINR is accurate even without consid-

ering measured channel matrices. This holds true for indoor Wireless LANs because the

channel vectors are relatively orthogonal, meaning that the channel matrices used for MU-

MIMO transmissions are well conditioned (as experimentally verified in [33]).
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Figure 4.4: Measured estimation error of Eq. (4.3). µ=0.36, σ=2.43 dB.

4.3.3 PUMA Expected Datarate Calculation Accuracy

Using our trace-driven emulation methodology, we compare PUMA against a post-sound-

ing, exhaustive search baseline. This baseline method forgoes the use of the SINR esti-

mation algorithm and employs the actual measured MU-MIMO SINRs. This effectively

represents the best case result of using Eq. (4.1) post-sounding after exhaustively measur-

ing each potential receiver’s CSI. Fig. 4.5 shows the comparative results of our emulation.

A perfect transmitter would send the incoming packets at a rate equivalent to their

arrival at the AP. However, because of the overhead time TOH in Eq. (4.4) required for

each packet transmission, this is not possible. Instead, we show that PUMA transmits at

the highest feasible portion of that rate by selecting transmission modes that maximize the

SINR and thus the MCS while minimizing the transmission overhead. When the aggregate

throughput saturates, the maximum possible throughput is achieved.

Observe in Fig. 4.5 that full knowledge of channel state from an exhaustive sound-

ing process only results in a 3% increase in saturation throughput. Additionally, over all
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aggregate offered loads, knowledge of full CSI only results in a maximum 7% increase

in throughput. Note that the exhaustive search method’s performance does not consider

the overhead incurred from sounding all potential receivers (like PUMA, it only consid-

ers sounding overhead from the users actually served for each transmission). Had the

full sounding overhead been considered, the performance of the exhaustive search method

would perform significantly worse and its saturation throughput would be far lower.

Fig. 4.5 also highlights PUMA’s datarate inference method’s robustness to error. The

variation between the measured and estimated SINR values (shown in Fig. 4.4) has a stan-

dard deviation of 2.5 dB, approximately equal to the SNR range of each MCS. However,

even given this error, we observe that the performance difference between estimating the

MU-MIMO SINR and measuring it is minimal. This is a direct result of the effective

truncation of the estimated SINR metric, using the minimum SINR table. This truncation

essentially smooths the estimated SINR metric and results in similar performance to full
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Figure 4.5: Comparison between PUMA and post-sounding, exhaustive search.
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Figure 4.6: Comparison between PUMA and fixed modes ([M2:4, K1:4]).

knowledge of the MU-MIMO SINR without a post-sounding, exhaustive search.

4.3.4 Mode and User Selection Performance

We now compare PUMA to fixed mode selection indicative of the default method used

in 802.11ac. Specifically, we compare the performance of PUMA to static [M2:4, K1:4]

topologies in Fig. 4.6 for a range of offered loads. For each possible M , we show the best

fixed K value for sake of presentation. These static modes are all potential choices for

PUMA’s exhaustive search and thus observing how these parts contribute to our collective

algorithm illustrates how well PUMA handles varying M , K, bi, and measured omnidirec-

tional SNR values.

So as not to unfairly disadvantage the fixed modes, we permit the fixed [M , K] topolo-

gies to serve any number of users less than or equal to K. For example, given our omnidi-
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rectional channel measurements, when M=3, Kmax is 3 but individual transmissions can be

K2 or K1, depending on how many users have packets available in their queues.

Although PUMA is inherently a combination of all fixed modes, observe that for any

given offered load, no fixed mode performs comparably to PUMA (except at 10 Mbps

where all methods are equal). This result suggests that it is not only enough to know the

“best” [M , K] combination given some offered load but also it is necessary to dynamically

select between potential modes before every transmission, depending on user backlog and

omnidirectional SNR.

The relationship between user backlog and omnidirectional SNR is the key interaction

the fixed mode topologies fail to consider. Due to the sounding overhead incurred from

MU-MIMO transmissions, larger frame aggregation rates are required to properly amortize

the cost of employing parallel streams. Thus, users with lower omnidirectional SNRs (re-

sulting in lower achievable datarates) must have more backlogged packets to be efficiently

grouped in an MU-MIMO transmission. PUMA considers this interaction and thus does

not transmit to low omnidirectional SNR users in higher order modes until the user’s back-

log is large enough. Thus, the MU-MIMO sounding overhead efficiently and dynamically

amortizes the sounding overhead for each transmission.

A concern for PUMA is its potential to unfairly starve users that have consistently less

backlogged traffic or poor omnidirectional SNRs. However, unfair scheduling is not a

detrimental effect of PUMA, rather, it is a complementary issue. In the most basic sense,

PUMA enumerates a list of selections (potential modes and user groups), assigns a met-

ric to each, and selects the best. Our current metric is the aggregate throughput of the

system determined by user backlog and expected datarate. To ensure a fair transmission

system, an AP can employ any existing proportional fair scheduling algorithm (e.g., [34])

and adjust PUMA’s metric accordingly. This would manifest as simply adding a scaling

factor generated by a fair scheduling algorithm to step 4 of the PUMA protocol described
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in Sec. 4.1.4.

Given the measured channels from our experiments, PUMA provides an aggregate sat-

uration throughput increase of approximately 65 Mbps or 30% over the best fixed mode

([M3, K1:3]). The improvement in the saturation region with higher offered loads is of key

importance for high congestion scenarios. While the other scenarios all saturate to sim-

ilar aggregate throughputs (albeit at different rates), PUMA’s 30% saturation throughput

increase illustrates how efficient overhead amortization through adaptive mode selection

based on user link state and backlog allows the same AP to improve the performance of a

given topology.

Finally, PUMA’s user selection mechanism is a direct result of step 4 of the algorithm

discussed in Sec. 4.1.4. Once all potential mode and user groups are enumerated and as-

signed an aggregate throughput metric, the best mode and user combination is selected.

However, the best mode and user combination is not guaranteed to be unique. PUMA’s

aggregate throughput metric is dependent on per-user omnidirectional SNR and backlog.

Thus, multiple mode and user combinations may be assigned the same aggregate through-

put metric (e.g., the simplified example shown in Fig. 4.1). In such cases, a random selec-

tion or additional fairness metric can be used.

Nevertheless, real systems rarely have homogenous traffic arrival rates or per-user om-

nidirectional SNRs. Thus, although PUMA cannot guarantee a unique mode and user com-

bination, it provides a unique selection with high probability.



CHAPTER 5

MU-MIMO PROTOCOLS FOR STABLE CHANNELS

The previously discussed protocol, PUMA, avoids the pitfalls of highly variable channel

environments by utilizing omnidirectional SNR (as opposed to measured CSI) as a decision

metric for MAC layer decisions. While the use of omnidirectional SNR is motivated by its

temporal stability compared to measured CSI [27], it is inherently less accurate than using

measured CSI.

In the case of variable MU-MIMO environments, given the overhead inherent to the

channel sounding process (as discussed in Sec. 4.2), the benefits of avoiding channel sound-

ing outweigh the use of a less accurate metric.

However, when information regarding the stability of the MU-MIMO channel is known

beforehand, (e.g., when using the UHF band as discussed in Sec. 3.3, a different ap-

proach to MU-MIMO overhead management is vital to allow these multi-stream trans-

missions to achieve their full potential. Thus, for temporally stable MU-MIMO environ-

ments, we present Feedback Removal with Opportunistic Zero-overhead channel Esti-

matioN (FROZEN), an MU-MIMO protocol that avoids sounding overhead by leveraging

the relative temporal stability of particular MU-MIMO environments and uplink packet

transmissions to infer and track per-user CSI for concurrent transmissions without a costly

sounding procedure.
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The remainder of this chapter is organized as follows: Sec. 5.1 provides an overview

of FROZEN, Sec. 5.2 discusses ICSIQLE, the novel channel estimate tracking method that

necessary for informing FROZEN’s MAC-layer decisions, and finally, Sec. 5.3 provides an

experimental evaluation of FROZEN.

5.1 FROZEN Overview

In current MU-MIMO systems such as IEEE 802.11ac, CSI is obtained by first transmit-

ting an explicit sounding packet in one direction, and then having the receiver decode and

feed back the channel estimate as compressed data in the other direction [3] as shown in

Fig. 5.1(a). Although such multi-stream transmissions are key to increasing spectral effi-

ciency and therefore, system capacity, the overhead required for the measurement of CSI

can easily overwhelm the spatial multiplexing gains of MU-MIMO precoding1.
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Figure 5.1: Generalized overhead diagram of different types of channel sounding.

This amount of overhead is a result of two key factors: (i) the significant amount of data

required to feedback a digitized representation2 of the sounding packet on a per-antenna
1802.11ac feedback size can range from 1.6 kb to 329 kb per client depending on the number of antennas

on both AP and client [3, 2].
2While the training sequence is only a few OFDM symbols in length, the channel estimate is computed
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and per-subcarrier basis and (ii) the potentially high frequency of CSI measurement (eg., a

per-packet basis) due to the MU-MIMO transmitter’s need for updated CSI.

To combat this overhead, FROZEN utilizes three key techniques:

1. Implicit Sounding: A process where the CSI between the AP and client is in-

ferred by training sequences sent from the client nodes. This process, as shown

in Fig. 5.1(b), reduces overhead because the sounding sequence does not have to be

serially fed back to the AP per subcarrier and thus the sounding overhead per receiver

is simply the amount of time required to send the sounding packet (for 801.11ac, the

NDP discussed in Sec. 4.2.2). This sounding method has been studied extensively

and novel reciprocal calibration methods [32] allow for its feasibility.

2. Passive CSI Collection: A CSI collection mechanism that implicitly infers CSI

from all previously transmitted uplink packets (e.g., data, acknowledgment) using

the channel training field of any OFDM transmission (for 802.11ac this is the VHT

Long Training Field (VHTLTF)). This indirect sounding procedure results in no de-

liberate sounding packets being sent and is shown in Fig. 5.1(c).

3. Indirect Sounding: In the case that the CSI for a particular user either has not been

collected or is outdated1, a FROZEN enabled AP will indirectly sound the user by

transmitting one packet in a single-user manner and implicitly measuring that user’s

CSI from the resulting acknowledgment. Thus, the AP can force a user’s CSI update

without any additional overhead.

While implicit sounding alone reduces sounding overhead, passive implicit sounding

completely removes sounding overhead because no deliberate sounding packets are ex-

changed between the AP and the client. Channel sounding effectively piggybacks on all

on a per-subcarrier basis. The training sequence transmits energy on all of these subcarriers in parallel while
the feedback packet must serialize the magnitude and phase measurements for each subcarrier to send it back.

1Determining if a user’s CSI is outdated is discussed in Sec. 5.2.
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existing uplink data transmissions. Additionally, when new CSI is required, FROZEN’s

indirect sounding mechanism still transmits data so no additional overhead is generated.

Because FROZEN allows for an AP to store (and track the validity of) a particular user’s

channel estimate, it allows for an AP to make offline MAC decisions. Thus, user selection

algorithms based on Eq. (4.1) are feasible and thus the inherent receiver separability of a

group of users due to a particular band/environment combination are irrelevant.

The efficacy of FROZEN is contingent on the ability of the AP to determine if and

when a particular user’s measured CSI is outdated and thus requires re-measurement. To

that end, we develop a novel CSI tracking algorithm Implicit CSI QuaLity Estimate (IC-

SIQLE)1, that not only tracks changes in magnitude but also changes in phase of the CSI

measurement2.

The method by which FROZEN uses ICSIQLE to actually track and estimate if subse-

quent transmissions require resounding is discussed in Sec. 5.2.3.

5.2 Implicit CSI QuaLity Estimate (ICSIQLE)

5.2.1 Absolute vs. Relative CSI Comparisons

As discussed in Sec. 5.1, FROZEN relying on previously measured CSI necessitates a

method of determining if and when a particular client’s previously collected CSI is still

suitable for use in beamforming to that client. Outdated CSI results in improperly targeted

beams that can result in inter-client interference.

However, tracking the change between subsequent channel measurements for a partic-

ular user (that user’s ~h vector) is not as simple as comparing a particular user’s CSI at some

time t, ~ht, to its subsequent ~h(t+∆t).

1pronounced “icicle”
2Existing CSI tracking methods such as autocorrelation or protocols like AFC ( [35]) fail to accurately

track phase changes due to phase wrapping, a key problem in MU-MIMO channel tracking [36] that ICSIQLE
avoids (which will be discussed next in Sec. 5.2.2)
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The aforementioned method compares the absolute difference between a user’s mea-

sured ~h’s. While absolute comparisons suffice for generalized channel statistics like auto-

correlation (where a large number of measurements are taken as shown in Fig. 3.13), such

comparisons fail to accurately track instantaneous changes in the measured channel due to

the nature of Orthogonal Frequency-Division Multiplexing (OFDM) transceivers and the

cyclic nature of phase.

A large absolute difference between two measured phases may have no effect on the

performance of a received, beamformed transmission for two key reasons:

1. Arbitrary phase offsets may be present in any one measurement of a particular user’s

~ht due to receive gain control or timing estimation jitter, normal effects in OFDM

transceivers that are compensated by the OFDM channel equalization step, yet be-

come added to the measured ~h at the receiver [37].

2. Second, phase, unlike magnitude, is cyclic and thus it “wraps,” reducing the utility

of absolute comparisons. For example, if one element of ~ht has a measured phase

of 359o and the corresponding element in ~h(t+∆t) has a measured phase of 1o, an

absolute comparison of the two elements would result in a phase difference of 358o

while in reality the phase could have only changed 2o. For this reason, the 802.11ac

taskgroup has discussed how absolute phase comparisons are not useful for tracking

CSI measurement variation [36] (tracking schemes require “phase immunity”).

Current CSI tracking metrics that consider absolute phase (such as AFC’s CN0 [5])

fail to capture the true variation of the channel (as opposed to phase wrapping effects) and

thus cannot accurately track the potential resulting performance loss. However, since our

ICSIQLE metric is dependent on relative phase differences between individual elements of

~h, it does accurately track channel variation and the resulting performance differential.

In Sec. 5.2.1 we show that relative phase differences are crucial to tracking channel

variability, first on an element by element basis and then as the ~h as a whole. Then, in
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Sec. 5.2.2 we show that using ICSIQLE, we can accurately track the potential performance

loss due to channel variation thus enabling FROZEN.

5.2.2 ICSIQLE’s Relative CSI Comparison Method

ICSIQLE’s relative comparison method is based on tracking changes of relative phase be-

tween elements of a particular user’s ~h measurement1. Thus, when comparing ~ht and the

subsequent ~h(t+∆t), ICSIQLE’s relative comparison method does the following:

Absolute (CN0) Relative (ICSIQLE)
~ht � ~h(t+∆t)

~ht � ~h(t+∆t)

∠~ht1 � ∠~h(t+∆t)1 ∆(∠~ht1 ,∠~ht2)� ∆(∠~h(t+∆t)1 ,∠~h(t+∆t)2)

∠~ht2 � ∠~h(t+∆t)2 ∆(∠~ht2 ,∠~ht3)� ∆(∠~h(t+∆t)2 ,∠~h(t+∆t)3)

∠~ht3 � ∠~h(t+∆t)3 ∆(∠~ht1 ,∠~ht3)� ∆(∠~h(t+∆t)1 ,∠~h(t+∆t)3)

Table 5.1: CSI Phase Tracking Metric Methods (example for M3 transmit antenna case).

To actually perform this relative phase comparison, we will use the product of the row

vector ~h by itself as ~hH~h where (·)H is denotes the Hermetian operation (conjugate trans-

pose). This multiplication is performed on ~ht and ~h(t+∆t) before comparing the two. For

the same example as shown in Table 5.1, the aforementioned vector multiplication accom-

1Recall that each element of the ~h corresponds to the measurement between each of the AP’s transmit
antennas and the clients antenna.



CHAPTER 5. MU-MIMO PROTOCOLS FOR STABLE CHANNELS 65

plishes the following:

~hH~h =


h∗1

h∗2

h∗3


(
h1 h2 h3

)

=


|h1|e−j∠∠∠h1

|h2|e−j∠∠∠h2

|h3|e−j∠∠∠h3


(
|h1|ej∠∠∠h1 |h2|ej∠∠∠h2 |h3|ej∠∠∠h3

)

=


|h1||h1|ej(��∠∠∠h1−���∠∠∠h1) |h1||h2|ej(∠∠∠h1−∠∠∠h2) |h1||h3|ej(∠∠∠h1−∠∠∠h3)

|h2||h1|ej(∠∠∠h2−∠∠∠h1) |h2||h2|ej(��∠∠∠h2−���∠∠∠h2) |h2||h3|ej(∠∠∠h2−∠∠∠h3)

|h3||h1|ej(∠∠∠h3−∠∠∠h1) |h3||h2|ej(∠∠∠h3−∠∠∠h2) |h3||h3|ej(��∠∠∠h3−���∠∠∠h3)



=


|h1|2 |h1||h2|e∆∆∆(∠∠∠1,2) |h1||h3|e∆∆∆(∠∠∠1,3)

|h2||h1|e∆∆∆(∠∠∠2,1) |h2|2 |h2||h3|e∆∆∆(∠∠∠2,3)

|h3||h1|e∆∆∆(∠∠∠3,1) |h3||h2|e∆∆∆(∠∠∠3,2) |h3|2

 (5.1)

We observe that this operation removes not only the measurement phase error, but also

other common phase angles in the CSI that have no bearing on beamforming accuracy.

The result populates the off-diagonal entries with all complex conjugate pairs such that all

remaining angles are differences (as shown in Table 5.1 In general, this property scales

to larger CSI vector sizes. An important feature of ICSIQLE is that it avoids selecting an

arbitrary path as a reference and biasing the measurement based on that path’s measurement

quality as apparent from all combinations of phase differences in the ~hH~h expansion.

Since we wish to track channel variation with respect to time, we define ICSIQLE as the

difference between the complex M ×M matricies formed by the operation in Eq. (5.1) for

the CSI estimated at two points in time. The output scalar value, ICSIQLEt,(t+∆t), defined

at time index (t + ∆t) with respect to an initial CSI measurement at time t represents the

“quality” of ht if it were used to beamform at time t + ∆t. The definition for ICSIQLE,
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taken as a mean of the Frobenius norms1 of the differences across N subcarriers, is:

ICSIQLEt,(t+∆t) ≡
1

2N

N∑
n=1

∥∥∥∥∥hH
t,nht,n

‖ht,n‖
−
hH

(t+∆t),nh(t+∆t),n∥∥h(t+∆t),n

∥∥
∥∥∥∥∥
F

(5.2)

5.2.3 Using ICSIQLE to determine CSI Staleness

When implemented on an AP, FROZEN relies on constant collection of CSI from uplink

data and control packets from associated users. For each user, the access point tracks:

(i) the last known implicit CSI estimate ~ht, (ii) the SNR or noise variance estimate for

that CSI, (iii) the current Exponentially-Weighted Moving Average (EWMA) measure of

previous ICSIQLE measurements, (iv) an arbitrary ICSIQLE threshold value Ith, and (v)

the last computed value of TVALID. When a new CSI estimate becomes available at (t+∆t),

these values are updated online with the value of TVALID used to tag the new CSI with a

“use by” time:

I1 :=ICSIQLEt0,t1 ,

EWMA(I)1 :=I1 + α · EWMA(I)0

TVALID :=Ith/EWMA(I)1. (5.3)

The key insight behind FROZEN is that at time t1, the moment a new implicit CSI

estimate is acquired by the system, FROZEN cannot exactly predict the channel at some

future t2 when that CSI estimate may be used to precode a new MU-MIMO transmission.

However, based on the observed rate of change of a particular user’s MIMO channel due

to client or environmental mobility, FROZEN can bound the expected performance of a

future transmission by limiting the amount of time, TVALID, a collected CSI measurement

1The Frobenius norm of the difference is the sum of the magnitudes of each difference so the effect on
change of each element of ~hH~h is considered.
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can be used.

When FROZEN determines that a user’s CSI estimate is stale, it has two choices that

are left to the MAC-layer. First, the CSI can be discarded resulting in the removal of the

user from any future beamformed transmissions until an uplink packet can refresh the CSI.

We discuss the use of this policy in more detail in Section 5.3.3.

Secondly, FROZEN also offers the possibility of a soft decision in terms of treating the

accuracy of implicit CSI as a continuum rather than a binary decision. Multiple TVALID

values can be defined for different confidence bounds on the expected beamformed perfor-

mance using an old CSI value. Specifically, depending on the available DoFs, less accurate

CSI could still be acceptable for MU-MIMO performance as shown in PUMA’s use of

MU-MIMO scaling properties (Sec. 4.1.2). This could drive an MCS or group-selection

algorithm that can utilize less reliable CSI.

Figure 5.2: A timeline of FROZEN, showing how new opportunistic CSI estimation events
are used, how TVALID is applied, and how calibration variance σ2

cal and CSI estimation
variance σ2

est can be used to adjust FROZEN’s decisions based on the performance of the
underlying radio hardware and the accuracy of the CSI measurement.

In Fig. 5.2, we present a theoretical timeline showing how the FROZEN evolves in a

working system and how thresholds for CSI quality are set. FROZEN predicts future con-

fidence bounds of implicit CSI based on the current estimated rate of change of ICSIQLE,
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represented by It. We represent opportunistic receptions of a given user’s packets as delta

functions, providing a new implicit CSI estimate and trigger re-calculation of EWMA(It).

For each reception, a new TVALID for the last received CSI is calculated. If the quality of

CSI is changing rapidly due to high channel variability, then FROZEN can not utilize a

previous CSI estimate for very long. At t4, the most-recent CSI estimate is overheard, and

the estimation variance σ2
est, calculated according to the methods discussed in Sec. 5.3.1,

is low, yielding a TVALID that is relatively high. Now, if the access point’s scheduler ever

wishes to transmit an MU-MIMO transmission including the user within TVALID, it can be

reasonably certain that the packet will be successful using the previously collected CSI.

The Error-Vector Magnitude (EVM) variance threshold that determines Ith is deter-

mined by the host system; for example, the variance after which the transmitter must change

MCS to guarantee reception or after which transmissions have unacceptable probability of

failing.

FROZEN’s ICSIQLE decision threshold is designed such that it is adaptable to both

the underlying accuracy of the radio hardware used and the instantaneous SNR of the CSI

estimate itself. Given these parameters, the system designer can set the appropriate thresh-

old to maximize performance i.e., ensure that a FROZEN enable AP re-sounds only when

necessary.

5.3 FROZEN Evaluation

5.3.1 Multi-Stream Noise and Channel Measurements

We implement a beamforming and channel-sounding framework based around the 802.11af

WiFi standard, in order to compare against 2.4/5 GHz implementations of 802.11ac since

the physical OFDM layers of 802.11ac VHT 40 MHz and 802.11af TVHT 5 MHz are iden-

tical aside from the radio sampling rate [38, 3]. Over-the-air transmissions are conducted
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using the WARPLab framework discussed in Sec. 3.1.

Standards-compliant piloted phase correction is implemented to compensate for sam-

ple timing drift during the payload, necessary to yield accurate measurements of received

EVM. Two copies of the cyclicly-shifted L-STF provide ample time to account for AGC

settling and the WARPLab trigger jitter. Timing recovery and carrier-frequency offset cor-

rection operates on the L-LTF field, while we utilize the TVHT-LTF symbols with the

802.11af spatial spreading matrix for channel estimation.

Our analysis of FROZEN requires updated CSI for each downlink beamformed packet

as well as CSI noise variance. On the multi-stream (one stream per client) downlink beam-

formed packet, we send an extra non-beamformed TVHT-LTF immediately following the

beamformed TVHT-LTF as shown in Fig. 5.3. When scaled according to the expected

degradation in beamformed SNR compared to broadcast SNR [39] to avoid AGC clipping,

this extra TVHT-LTF provides an estimate of the wireless channel at the moment that the

beamformed packet is sent. This addition is not necessary for FROZEN’s operation, but it

allows us to validate the protocol.

...

TVHT-LTF PAYLOADAGC
Timing 

Recovery

L-STF L-STF L-LTF LTF1 LTF2 LTF3 LTF4 S1 S2 SN

TimeWARPLab Transmit/Receive Buffer

Figure 5.3: Multi-stream beamformed packet format implements the 802.11af TVHT
5 MHz PHY, utilizing the TVHT-LTF for multi-stream channel sounding.

5.3.2 ICSIQLE Performance Evaluation

5.3.2.1 The Necessity of Relative Phase for CSI Tracking

Before directly evaluating ICSIQLE we first evaluate its premise: relative angle compar-

isons of ~h’s is key to actualy tracking the variability of the channel. Using the method
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discussed in Sec. 5.3.1 and the hardware setup discussed in Sec. 3.1, we measured a static

[M4, K1] channel in a laboratory environment.

We show the measured phase over a 30 second time interval in Fig. 5.4. For simplicity,

we only show the measurements for an arbitrary subcarrier; however, the conclusions drawn

subsequently would be identical regardless of choice.
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Figure 5.4: Using the difference in phase between different transmit antennas is much more
reliable than depending on absolute measures of channel phase.

The dashed black line is the absolute measured phase of the antenna path from the

AP’s first antenna to the client. Observe the high variation of the measured phase when

considering absolute phase differences. If tracking absolute phase, this static, laboratory

environment channel appears to be highly variable and any MAC protocol based on this

metric would be unnecessarily resounding the channel.

However, when considering relative phase, as shown by the red, green, and blue lines

(antennas 2, 3, and 4 relative to antenna 1), we see that the phase variability of the channel
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is actually low as we hypothesized given the measurement environment. This motivating

experiment clearly shows how relative phase measurements are key to truly tracking the

variability of the MU-MIMO channel and can solve the problems discussed in the 802.11ac

task group discussed in [36].

5.3.2.2 ICSIQLE: MU-MIMO Performance Tracking

In order to actually validate the predictive power of ICSIQLE, we perform a series of over-

the-air experiments where we explicitly beamform in a [M4,K1] office environment to a set

of nodes. The experiments consist of a single sounding packet at t = 0, followed by a set

of downlink beamformed transmissions utilizing the same CSI from the original sounding

packet for precoding.

We chose the Single-User Beamforming (SUBF) [M4, K1] topolgy instead of an MU-

MIMO topology because the purpose of a per client tracking metric is to measure the

CSI variability for a particular user. As discussed in Sec. 2.2, the two key performance

determining factors for an MU-MIMO transmission are channel variability and receiver

separability. Because ICSIQLE or any other CSI tracking method’s goal is to measure

channel variability, we remove the effect of receiver separability from this portion of the

evaluation to accurately judge how well ICSIQLE tracks channel variability.

Each downlink beamformed transmission also estimates the current broadcast down-

link channel as discussed in Section 5.3.1. Using this information, we are able to calculate

ICSIQLE values between t = 0 and subsequent (t + ∆t)’s and correlate that with corre-

sponding measured EVM estimated from the decoded payload of the beamformed packet.

This experiment is repeated thousands of times in different static and pedestrian-speed mo-

bile nodes in an office environment. For comparison, we also compute corresponding CN0

values (based on absolute phase) and show the performance of both metrics in Fig. 5.5.

Fig. 5.5 plots the considered metric and the corresponding measured EVM from trans-
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(a) AFC’s CN0 metric [5] employs element-by-element absolute phase differ-
ence to track the user’s CSI and thus cannot accurately predict the performance
of MU-MIMO transmissions. Neither the measured performance (EVM) nor
the variance of performance are correlated with CN0.
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(b) ICSIQLE’s leveraging of relative phase allows for accurate tracking of
beamforming performance. Larger ICSIQLE values indicate larger variations
between ~ht and ~h(t+∆t) and the experimentally measured beamformed EVM
shows the performance drop at higher variability.

Figure 5.5: Relative Angle (ICSIQLE and Absolute Angle (CN0) CSI tracking metrics vs.
mean beamformed EVM and 2σ beamformed EVM bounds, representing a 95% confidence
interval on EVM.

missions resulting from a sounded ~ht over the channel ~h(t+∆t). The shaded regions cor-

respond to the 2σ 95% confidence interval of the measured beamforming performance in

terms of EVM. We expect that the larger difference between ~ht and ~h(t+∆t) reported by a
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particular metric, the worse (larger) EVM should be.

Observe the uncorrelated performance of the absolute difference based CN0 metric in

Fig. 5.5(a). Not only is mean EVM monotonically increasing as expected, but it also (for

this experiment) has a parabolic shape implying that the worst case performance should be

at centrally measured CN0 values. Using this metric for CSI tracking and thus to determine

when to resound the channel would result in a significant number of false positives and thus

would not actually reduce sounding overhead even when possible.

However, observe the correlated, monotonically increasing shape of our relative-phase-

based ICSIQLE metric in Fig. 5.5(b). This result shows two key factors of ICSIQLE’s

ability to predict beamforming performance. First, ICSIQLE tracks the mean of the ex-

pected beamformed EVM as evidenced by the increase in mean EVM with an increase in

~h variation. Second, and more importantly, ICSIQLE also tracks EVM variance as shown

by the increase in the shaded 2σ bounds with increasing ICSIQLE values.

This ability to track EVM variance is key as it allows for the system designer to uti-

lize FROZEN with ICSIQLE to set relative thresholds on acceptable ICSIQLE values. As

the true channel CSI drifts (it becomes more and more outdated), our ability to bound

the beamformed EVM utilizing that stale CSI also decreases. Without the luxury of re-

sounding CSI, we are unable to guarantee that the eventual beamformed packet will meet a

given threshold EVM necessary for accurate decoding in all topologies and circumstances

but we can estimate how much the EVM will vary.

For example, if the current 16-QAM-1/2, MCS selected for client k is optimal for an

[M4, K2] transmission with fresh CSI, the access point scheduler may know that a degra-

dation of EVM from 5% to 8% (or, equivalently, degradation of SNR from 26 to 22 dB)

would correspond to a reduction in MCS to QPSK-3/4. The controller could declare that rate

drop unacceptable and send the next enqueued packet to client k as an [M4, K1] transmis-

sion, where the ACK would refresh the user’s implicit CSI. An alternative strategy would
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be to instead reduce the MCS rate to ensure (with 95% confidence) that the transmission is

successful, and again refresh the implicit CSI upon the client’s ACK.

Regardless, the key is that ICSIQLE provides the necessary information to allow the

MAC to make these decisions by linking measured ICSIQLE rates to expected future EVM

performance bounds.

5.3.2.3 ICSIQLE: MU-MIMO Channel Variability

To validate ICSIQLE’s ability to track CSI variation due to environmental mobility, we

construct an [M4, K2] topology, use the measurement method outlined in Sec. 5.3.1, and

perform a 300 second long experiment. This experiment consisted of three discrete time

sections: (i) static environment, (ii) mobile environment at pedestrian speeds, and finally

(ii) returning to a static environment.

Our measurement method allows for the collection of instantaneous MU-MIMO CSI

and thus calculate instantaneous ICSIQLE values for subsequent beamformed transmis-

sions. The purpose of this experiment is to see if ICSIQLE can accurately track the differ-

ences between static and mobile environments to emulate the use of this metric in a real

system.

Fig. 5.6 shows the rate of change of ICSIQLE and CN0 over time. We plot the mea-

sured metric values for the two receivers and super-impose the EWMA curve on top of the

measured points.

Fig. 5.6(a) shows CN0’s absolute phase based method’s ability to track the difference

between static and mobile channels. There is no correlation nor discernible difference be-

tween the measured CN0 values in the static and mobile regions. As stated by the 802.11ac

task group, such metrics require “phase immunity” [36] which such absolute phase based

methods do not have.

Unlike CN0, ICSIQLE’s relative angle based metric’s ability to track channel variation
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(a) The AFC CN0 metric’s [5] reliance on absolute phase does not allow for
the tracking of static and mobile environments.
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(b) ICSIQLE’s relative phase calculation allows for accurate tracking of static
and mobile MU-MIMO environments

Figure 5.6: Rate of change of ICSIQLE over time for two clients in an [M4, K2] system,
plotted during a trial where the environment was static until 100 seconds, pedestrian-speed
channel mobility was induced until 180 seconds, and then the channel remained static for
the remainder. An exponentially-weighted moving average is super-imposed.

is shown in Fig. 5.6(b). Observe that as soon as the transmission environment switches

from static to mobile, the ICSIQLE metric immediately increases for both receivers and

remains high for the duration of the mobile period. Once the environment becomes static

again, the ICSIQLE value for both receivers immediately drops back down to the level it

was in the initial static time period. While the underlying principle of estimating the noise
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power between two CSI estimates is sound, it is clear that an accurate system metric must

also be robust to measurement phase error in practice.
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Figure 5.7: A plot of the calculated TVALID for the two users in the channel mobility exper-
iment.

Finally, using the same channel trace from the previous experiment and the method

shown in Sec. 5.2.3, we present an example computation of TVALID for an Ith = 0.25 in

Fig. 5.7. Note how for this chosen Ith, a FROZEN enabled AP, the static time period

allows for approximately 10 seconds of valid time while the mobile time period allows for

less than one second of valid time. This plot emulates how a FROZEN enabled AP would

actually use EWMA(I)t to make MAC-layer resounding decisions.

5.3.3 Numerical Analysis of FROZEN

Now that we have verified the efficacy of ICSIQLE with regards to channel tracking,

we now analyze the potential gains of a FROZEN-enabled AP compared to a standard

802.11ac, explicit beamforming system.

We consider the operating regions of 802.11ac explicit beamforming and FROZEN for
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different MCS indexes and observe the performance for different packet aggregation rates.

The results of this analysis are shown in Fig. 5.8.
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Figure 5.8: Performance of FROZEN with respect to packet aggregation rate and MCS
selection, compared to 802.11ac with MU-MIMO overhead for an [M4, K4] system.

For two different modulation rates, we show the operating regions for FROZEN and

802.11ac explicit beamforming. These shaded regions are bounded by the best and worst

case performance for the two beamforming methods. The differences between the best and

worst case performance for these beamforming methods differ due to the method by which

they collect CSI and are outlined below:

• Explicit 802.11ac: For 802.11ac explicit feedback, as outlined in Sec. 4.2.2, the con-

trolling factors for the amount of CSI feedback are the number of bits per subcarrier

and the number of subcarriers fed back (due to subcarrier grouping). While a lower

grouping factor and larger number of bits per subcarrier would result in a more ac-

curate measurement (and thus better performance), that effect is not considered here;

only the amount of feedback overhead.
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– Best Case: Subcarrier grouping = 4, Bits per subcarrier = 14.

– Worst Case: Subcarrier grouping = 1, Bits per subcarrier = 16.

• FROZEN: While FROZEN does not utilize the explicit sounding mechanism (i.e.,

the CBFR from Sec. 4.2.2), it may execute non MU-MIMO data transmissions (to

force an acknowledgment to collect an implicit CSI estimate). These packets still

contain data but as they are not parallel transmissions, they may result in lower over-

all throughput than an MU-MIMO system that does not contain an explicit sounding

sequence.

– Best Case: CSI is always up-to-date from to the previous transmission’s ac-

knowledgment. Effectively, an 802.11ac MU-MIMO transmission without an

NDP, NDPA, or CBFR.

– Worst Case: Every single MU-MIMO transmission requires an indirect re-

sounding of the channel. Thus, every [M4, K4] transmission is interleaved with

four single-user packets to force the CSI update. For a conservative evaluation

of FROZEN, we assume that the single-user transmissions are all at the same

MCS as the multi-user transmissions (although in reality they would be higher;

see Sec. 4.1.2).

Now observe how the operating region differences between FROZEN and 802.11ac

in Fig. 5.8 are heavily dependent on the chosen MCS and the amount of transmitted data

(packet aggregation rate). These factors determine how much time and how efficiently a

particular MU-MIMO transmission spends transmitting data as opposed to overhead. At

high packet aggregation rates and low MCS (QPSK-3/4 is shown), the benefit of FROZEN

appears minimal. However, modulation rate does not have the largest effect on FROZEN’s

performance increase. Instead, FROZEN’s benefit is immediately clear at lower packet ag-

gregation rates. Note in Fig. 5.8 how both modulation rates (QPSK-3/4 and 64-QAM-3/4)
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show larger relative increases in throughput when using FROZEN in the low packet aggre-

gation regime.

To explore this further, we will look at these two modulation rates among others and

specifically observe the relative throughput increase of FROZEN with respect to packet

aggregation rate in Fig. 5.9.
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Figure 5.9: Percent gain of FROZEN with respect to 802.11ac with MU-MIMO overhead
for an [M4, K4] system.

For the given modulation rates, the percent increase of the mean expected throughput

(the curve bisecting each transmission type’s operating region in Fig. 5.8) is shown from

802.11ac to FROZEN.

The lowest modulation rate, BPSK-1/2, shows the least benefit of using FROZEN be-

cause the transmission time of the data is far greater than that of the overhead required

even by 802.11ac. At approximately 10 aggregated packets per transmission, the benefit is

almost zero; however, in cases of low packet aggregation (when a user’s transmit queue is

minimally backlogged), the use of FROZEN allows an AP to achieve a 10 to 40% increase
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in throughput.

However, at higher modulation rates where the transmission time of the data is signifi-

cantly less (although more efficient), the overhead from the 802.11ac sounding mechanism

begins to overwhelm the gains of MU-MIMO. In these cases, FROZEN provides a much

higher throughput increase. In fact, in the lower aggregation rates where normally an MU-

MIMO transmission would not be feasible due to the overhead required, FROZEN truly

shows its potential. These minimally backlogged cases show anywhere from 60 to 80%

throughput increases for FROZEN due to its opportunistic removal of overhead.

Minimally backlogged flows are common in low data-rate applications such as Voice

over IP (VoIP) or simple internet browsing. FROZEN allows for MU-MIMO transmissions

to be used in these cases in addition to fully backlogged scenarios. Additionally, applica-

tions such as VoIP require low latency and FROZEN allows an AP to quickly serve those

users without switching to SISO or waiting for the queue to fill to the point where the

MU-MIMO transmission is feasible in terms of overhead.

The explicit beamforming mechanism of 802.11ac incurs significant overhead to the

point where MU-MIMO transmissions are only efficient at very high aggregation rates and

low modulation rates. FROZEN bridges the gap to the large remainder of transmission

scenarios and allows MU-MIMO transmissions to function efficiently in all cases.



CHAPTER 6

RELATED WORK

6.1 SDR Platforms

A number of common development platforms are capable of some degree of frequency-

agility and programmability, e.g., [40, 41, 42]. However, these platforms are generally

limited to either narrow-bandwidth applications when used for real-time applications or

lack the open hardware and software stack required for research. None of them contain

high-power amplifiers for long-range experiments. The form-factor currently required for

real-time operation of platforms performing DSP operations on a CPU [40, 41] becomes a

limitation when measuring wideband channel statistics for long periods of time with high

temporal granularity, as such experiments often require many mobile user nodes.

Furthermore, existing systems do not integrate all components (specifically, a high-

power analog front-end or highly dynamic AGC subsystem) necessary for high-bandwidth,

long-range experiments. Off-the-shelf UHF amplifiers are not designed for frequency-flat,

wideband operation between 470-698 MHz and their size and external power requirements

further hinder the mobility of multiple radio nodes.

WURC is designed to work interchangeably with any digital baseband and only draws

power from the expansion card slot available on most FPGA development boards while
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integrating the remaining components necessary for a high-powered wideband transceiver.

In combination with WURC, the Wireless Open-access Research Platform (WARP) digital

baseband platform contains a complete real-time layer 2 network stack and large exper-

imental log storage capabilities (2 GB DDR3 RAM) within a small form-factor board,

making it feasible to build and deploy a large number of wireless, mobile nodes for UHF

MU-MIMO experiments.

6.2 Over-the-Air Characterization Studies

6.2.1 MU-MIMO 2.4/5 GHz Characterization.

While previous work emphasizes the importance of channel coherence time for MU-MIMO

systems [10] and theoretical results suggest that center frequency is directly related to chan-

nel coherence time [21], these works do not provide the information necessary to perform

a comparison based on center frequency. Such an investigation is necessary as MU-MIMO

theoretical models for UHF and 2.4/5 GHz WiFi bands are parametrized for different en-

vironments (outdoor and indoor respectively). Models suggest that UHF band MU-MIMO

exhibits increased temporal correlation at the cost of increased spatial correlation compared

to 2.4/5 GHz WiFi (which would be detrimental to MU-MIMO due to the difficulty in pro-

viding orthogonal streams to the user [10]). However, we show that this tradeoff is not a

result of the frequency band; instead, it is a result of the transmission environment. Thus,

this discrepancy is not an inherent flaw to existing MU-MIMO channel models; rather, it

is a result of incomplete parametrization and comparison of the MU-MIMO channel for all

band/environment combinations.
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6.2.2 SISO UHF Characterization

Several works explore the propagation characteristics of UHF transmissions in a variety

of environments and topologies, e.g., [43, 44, 45, 46]. These works exhaustively analyze

the performance of packetized UHF transmissions through different materials and in var-

ious environments. However, they focus on single-antenna, single-user transmissions and

thus the characterization is restricted to metrics such as path loss, delay profile, and atten-

uation through materials. In contrast, our work focuses on the aggregate effects of these

metrics with respect to MU-MIMO transmissions, namely temporal and spatial correlation

in outdoor and indoor environments. Additionally, our work focuses on comparing these

characteristics to 2.4/5 GHz bands where MU-MIMO techniques are used prevalently.

6.2.3 MIMO UHF Characterization

Other works exhaustively characterize MIMO transmissions in the UHF band [47, 48, 49,

50, 51]. However, they focus on outdoor, Single-user MIMO transmissions and thus focus

on point to point transmissions with a single transmitter/receiver pair, each equipped with

multiple antennas. While single-user and multi-user MIMO transmissions can have an

equivalent number of transmit/receive antenna paths, the co-located receive antennas in the

single-user case drastically reduces the variability in the temporal and spatial correlation

with respect to environmental factors. Thus, the usage scenario of distinct MU-MIMO

user nodes separated by some distance is not represented in the existing work. Instead, our

work focuses on multi-user MIMO transmissions and specifically characterizes the effects

of separated receivers.

Lastly, uplink MU-MIMO channels were studied in the UHF-band in a rural outdoor en-

vironment [52]. In contrast, we focus on downlink transmissions, consider both indoor and

urban outdoor environments and provide channel characterization and spatial correlation

of groups of users. Additionally, we evaluate both UHF and 2.4/5 GHz band MU-MIMO
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performance to comparatively characterize the performance of a UHF-band MU-MIMO

system and provide an open-source platform.

6.3 MU-MIMO Protocols for Overhead Amortization

6.3.1 Frame Aggregation

Numerous works consider the effects of frame aggregation in MU-MIMO systems. For

example, [53] develops a frame aggregation technique and [54] examines the effects of

frame aggregation specifically with 802.11ac.

While PUMA selects the most efficient mode based on the number of packets in each

receiver’s queue, frame aggregation techniques are complementary to PUMA since these

techniques can weight or rule out the initial set of potential users. Implementing a frame

aggregation technique with PUMA simply requires the modification of step 1 outlined in

Sec. 4.1.4. The selection of KR from Kmax can be based on a rule more sophisticated than

user packet availability. Additionally, once the list is generated, the values of bi can be

weighted accordingly to implement a frame aggregation protocol.

However, such frame aggregation techniques, are not necessary with a FROZEN en-

abled AP. The purpose of frame aggregation is to amortize the MU-MIMO sounding over-

head at the cost of increased latency when serving a particular user. When transmitting in

the appropriate operating regime, FROZEN opportunistically removes sounding overhead

and allows an AP to transmit any length frame with any number of aggregated packets

without penalty.

6.3.2 User Grouping and Selection

Several works focus on user grouping and selection based on channel state and/or unequal

transmission length [55, 56, 57, 58, 35]. These works use theoretical expressions similar
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to Eq. (4.1) to estimate the aggregate capacities of potential user sets. The information

required to employ these modeling techniques is the channel state.

Environments that exhibit high channel variability preclude the ability to use previously

collected CSI and continually measuring the channel for all possible users would signifi-

cantly diminish the performance of MU-MIMO transmissions due to overhead. Thus, in

this operating regimes, PUMA allows these MAC-layer decisions to occur before sound-

ing. While the aforementioned protocols are potentially more accurate than PUMA due to

the additional information they require, procuring this information given protocol overhead

render them impractical to deploy. Also, due to the volatile nature of indoor, 2.4/5.8 GHz

WLANs, even once that information is collected, it has a high probability of being outdated

further reducing its accuracy. PUMA balances the tradeoff between obtaining the neces-

sary information and the time taken to obtain that information, and thus is more plausible

for a true 802.11ac WLAN deployment.

On the other hand, these types of Eq. (4.1)-based protocols can be beneficial in the low

channel variability operating regime and their techniques are complementary to FROZEN.

However, they all lack a channel tracking metric to actually enable their functionality.

FROZEN’s ICSIQLE metric would allow these user grouping protocols to determine of

previously collected CSI is valid and thus make them feasible to implement.

The authors of [5] propose a method to reduce the rate of channel sounding by at-

tempting to track the variation in the MU-MIMO channel. In the highly variable operating

regime, this method provides limited utility as the result of their tracking would result in

per-packet re-sounding. For these regimes, PUMA is required to make user selection de-

cisions before sounding occurs. In regimes that exhibit low channel variability, [5] could

be beneficial; however, as extensively shown in Chapter 5, their channel tracking method,

CN0, attempts to track absolute phase instead of relative phase and thus does not provide

any tracking ability whatsoever. FROZEN’s ICSIQLE metric, however, allows for accurate
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tracking of channel variation and thus allows a FROZEN enabled AP to accurately deter-

mine when the channel must be re-sounded. Additionally, through FROZEN’s passive-

implicit sounding method, the sounding overhead is not just reduced but completely re-

moved.

6.3.3 Mode Comparisons

Survey works exist that compare different MIMO modes such as MU-MIMO and frame

aggregation [59] or MU-MIMO and multiple SU-MIMO [60]. Both works highlight the

tradeoffs between these schemes but do not provide algorithms for exploiting those trade-

offs such as PUMA or FROZEN. Additionally, neither work verifies these differences with

measured over-the-air transmissions.



CHAPTER 7

CONCLUSION

In this thesis, we show that the development of separate MU-MIMO protocols for different

bands and environments is necessary to ensure efficient MU-MIMO performance. Exist-

ing MU-MIMO protocols and the existing 802.11ac standard are all-purpose solutions for

MU-MIMO transmissions that must function in the pathological case of MU-MIMO (high

channel variability and difficult user separability) as shown in Fig. 7.1.
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Figure 7.1: Thesis Contributions.
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While these all-purpose protocols can certainly work for all operating regimes, their

efficiency is significantly diminished compared to protocols that leverage the characteristics

of different operating band and environment combinations.

In this work, we first identify the band and environment factors that contribute to the

MU-MIMO performance determining characteristics (channel variability and user sepa-

rability) through an extensive measurement study. Then, we develop Pre-sounding User

and Mode selection Algorithm (PUMA) and Feedback Removal with Opportunistic Zero-

overhead channel EstimatioN (FROZEN), protocols whose development was driven by our

measurement study and that leverage the appropriate characteristics of each MU-MIMO

operating region.

This method of MU-MIMO protocol design, which does not target the pathological

MU-MIMO operating region, allows for transmission techniques that increase MU-MIMO

efficiency and allows this transmission technique to reach its full potential.
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